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FLUID MODELING

NUMERICAL MODELLING OF
Hydrodynamic interaction between STRUCTURES and ocean waves

Linear potential flow
Time or frequency domain models

FAST AND EFFICIENT
LOW AMPLITUDE MOTIONS

WAMIT, Nemoh, WEC-SIM,
HydroDyn (used in FAST)

CFD models

Approximate Navier-Stokes

TIME CONSUMING
VIOLENT FLOWS, VISCOUS FLOWS

N

Meshbased Meshless
methods methods
OpenFoam, IH-Foam, SPH

Fluent, Fluinco, REEF3D



FLUID MODELING

Navier-Stokes SPH
L: linear EQUAT'ON
P-NL: partially-nonlinear
W-NL: weekly-nonlinear
F-NL: fully-nonlinear. ‘
< CFD
VISCOUS EFFECT (RANSE)

Neglected or somewhat neglected

Potential
Flow-CFD

Computation

MODELS FROM DATA
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Penalba et al. (2017). Mathematical modelling of wave energy converters: A review of
nonlinear approaches. Renewable and Sustainable Energy Reviews, 78, 1188-
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2. The SPH numerical method




SMOOTHED PARTICLE HYDRODYNAMICS

Continuos fluid Set of particles

Each particle is a nodal point where physical quantities are computed as an interpolation of
the values of the neighboring particles solving the N-S equations and using summations.

KERNEL
Generic properties

N
Al:ZA

J=1

m
i h)— COMPACT
Pj SUPPORT

KERNEL
FUNCTION

Schematic view of a SPH convolution (Wikipedia CC BY-SA 4.0)



IMPLEMENTATION

(Density Diffusion Term, Fourtakas et al., 2020)

Mass
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SMOOTHED PARTICLE HYDRODYNAMICS

Particles = Computational nodes




SMOOTHED PARTICLE HYDRODYNAMICS

Pressure i
251 500 780 1e+03

SPHERIC YouTube: https://voutu.be/huXY-rhwMJA




SMOOTHED PARTICLE HYDRODYNAMICS

PROS (comparing with mesh-based CFD codes):
= Handling complex geometries and high deformation;
= Distinguishing between phases due to holding material properties at each particle;

= Easier to couple with other methods.

CONS (comparing with mesh-based CFD codes):
= Boundary conditions are still an open issue;
= Turbulence treatment not fully developed yet;

= Time computation is expensive.
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3. DualSPHysics code

DualSPHysics



DualSPHysics

Free, open-source code
Collaborative project
LGPL license

Highly parallelised

Pre- & post-processing

Applied to real problems

s00800800. Le08000800.

DualSPHysics

Free Software

https://dual.sphysics.org/
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DualSPHysics

Free, open-source code
Collaborative project

LGPL license

Highly parallelised

Pre- & post-processing

Applied to real problems

D ua I S P H ySics Environmental Physics ILaboratory  RE! : El Ha
EPhysLab &



DualSPHysics

Free, open-source code
Collaborative project
LGPL license

Highly parallelised

Pre- & post-processing

Applied to real problems

Dominguez et al. (2021). DualSPHysics: From fluid dynamics to
multiphysics problems. Computational Particle Mechanics. Link




Coupling with other models

Numerical modelling to study the efficiency and survival of WECs
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Coupling with other models

Reimplement

MoorDynT ¢@wmm MoorDyn

New Features

https://qithub.com/imestevez/MoorDynPlus http://www.matt-hall.ca/moordyn/
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DuaISPHySics bottom contact

4
mass and buoyancy

C++ implementation

Bugs in MoorDyn are solved

Robust control of exceptions

Different water depths

More than one moored floating object
Mooring connected to more than one
floating object

Define a maximum value of tension for
the mooring lines

HoW
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Coupling with other models

MoorDyn+

https://qgithub.com/imestevez/MoorDynPlus
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Coupling with other models Wy,
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4. Floating offshore wind turbines



Towards a New Numerical Tool for Multiphysics d

Simulations of Floating Offshore Wind Turbines lgi
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Performance issue in SPH

The SPH method is very expensive in terms of computing time.

For example, a simulation of this dam break

300,000 particles Takes more than
o » 15 hours
1.5 s (physical time) (execution time)
Time: 0.15 s
because: 2909928%0 00293
. . o Q-0

* Each particle interacts 0% ,71) °2q
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with more than 250 % N\ 0

neighbours. B s

Time: 0.45 s o Jo
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" Neighbor list
* At=10°-10* so more Ny

than 16,000 steps are
needed to simulate 1.5 s

Time: 0.75 s of physical time.




Performance issue in SPH

CaseDambreak

« SPH presents a high computational cost that increases when
increasing the number of particles.

« The simulation of real problems requires a high resolution which
implies simulating millions of particles.

-

The time required to simulate a few seconds is too large. One second
of physical time can take several days of calculation.

IT IS NECESSARY TO USE HPC TECHNIQUES TO REDUCE
THESE COMPUTATION TIMES.



GPU acceleration

Theoretical GFLOP/s at base clock CUDA Programming Guide v9.1
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—+—=NVIDIA GPU Single Precision
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9000 =—+=NVIDIA GPU Double Precision
8500 =t=Intel CPU Single Precision

8000
“#—Intel CPU Double Precision

7500 -
7000
6500
6000

5500 -

Graphics Processing Units (GPUs) o
 video game market boosted its improvement |
- their computing power has increased much oo
faster than CPUs. 20 |
- powerful parallel processors ey

Advantages: GPUs provide a high calculation power with very low cost and without
expensive infrastructures.

Drawbacks: An efficient and full use of the capabilities of the GPUs is not
straightforward.




DualSPHysics performance
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Speed-up:

over
Intel i9-10900K CPU (4.90 GHz - 16 threads)

Dominguez et al., 2021. DualSPHysics: from fluid
dynamics to multiphysics problems. Computational
Particle Mechanics. doi:10.1007/s40571-021-00404-2
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INITIAL SETUP

Element Symbol Quantity  Unit
Cross sectional stiffness EA,; 03.3 kN
Equivalent stiffness EAa 31.1 kN
Nominal diameter Dy 2.50 mm
Tower Seg.me-nts | N 10 - %
Density in air P 7500 kg/m-
Weight in fluid % 0.40 N
Natural frequency (Eq. (11)) 3.00 MHz
Model time step dty 3.35e-06 S
Central tower
Pontoon \ MoorDyn+

Tendons

Internal line
spring and damper

Oguz et al. (2018). Experimental and numerical analysis of a TLP /
floating offshore wind turbine. Ocean Engineering



PARTICLE DISCRETIZATION

Nodal point
(or particle)

Pre-processing tool comes bundled in the software package



time= 0.00 s

SURGE DECAY TEST Izoooo
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Response Amplitude Operator (RAO)
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Oguz et al. (2018). Experimental and numerical analysis of a TLP
floating offshore wind turbine. Ocean Engineering
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WAVE GENERATION AND PROPAGATION

wave period = [1.00 — 5.00] s

wave height = 0.06 m

water depth = 1.91 m
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WAVE GENERATION AND PROPAGATION

wave period = [1.00 — 5.00] s
wave height = 0.06 m

water depth = 1.91 m
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RAO VALIDATION

Tests under regular waves

time= 0.000 s

time= 0.000 s

1 GPU NVIDIA V100s
48 s Physical time
5.82 M Particles

79 h Runtime



RAO VALIDATION

Tests under regular waves
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RAO VALIDATION

“[...] itis presumed that this lack of viscous effects leads to the
overestimation of the surge response at the peak of the RAO.”
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Oguz et al. (2018). Experimental and numerical analysis of a TLP
floating offshore wind turbine. Ocean Engineering



INVESTIGATION

time= 0.00 s

Tagliafierro B., Karimirad M., et al. (2022). Numerical
assessment of a Tension-leg platform wind turbine in
intermediate water using the Smoothed Particle
Hydrodynamics method. Energies (under review)

energies

1 GPU NVIDIA V100s
1227 s  Physical time
2.58 M Particles
28.5d Runtime
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Floating offshore wind turbine
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Simulating WECs with DualSPHysics i,
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Wave energy converters (WECs)

Oscillating wave surge converter under regular waves

Crespo et al., 2017 Coastal Engineering
Oscillating water column
Verbrugghe et al., 2018 Coastal Engineering
Oscillating water column and point absorber
Verbrugghe et al., 2019 Energies
Point absorber
Brito et al., 2020 Renewable Energy

Oscillating wave surge converter with PTO

(Brito et al. 2020)

Ropero-Giralda et al., 2020

Renewable Energy
Point absorber under regular and focused waves

Quartier et al., 2021

Water
Hydrodynamics drag on point absorbers

time= 0.00 s

Ropero-Giralda et al., 2021

Energies
System Identification of Point absorbers

Quartier et al., 2021

Applied Ocean Research
Oscillating water column including air effects

Tagliafierro et al., 2022

Applied Energy
Taut moored point absorber under focused waves

Radiation test for a point absorber (Ropero-Giralda et
al. 2021)




Wave-WEC interaction
Mooring systems

Power Take Off
systems

WEC array or farm

Illustration by Alfred Hicks, NREL. https://www.nrel.gov/water/wave-array.html




Uppsala WEC

UNIVERSITET

Goteman et al., 2015



WAVE ENERGY CONVERTERS

Experimental setup for testing under wave
actions.

End stop

Translator

Schematic of the WEC (Waters et al. 2007) with a cylinder buoy. Copyright
2007 AIP Publishing LLC. Engstrom et al., 2017



WAVE ENERGY CONVERTERS

A
20 Mz + eproZy + K(z)(2, — 2,) = — Mg,
mz, + k,,(zy — z,) = mg + F(1),

<2
| q m
k?]’l kes%
21 M km if |Z|| < LS/QL
T '®) stroke K = .
k,+k, if|zy| = L /2;

Tagliafierro et al., 2022



WAVE ENERGY CONVERTERS

Ke.

S

K
“1 T é M

e
AAAANR NS

O

-

> - - + + o+ o

4
'
t
|

-+

’ DualSPHysics

\\\\\Ill//
+ 2 CLRONG
Z
MoorDyn i G
Label Function Instance Manager
A Buoy Moving CHRONO
B Taut Line Mooring line MoorDyn
Moving CHRONO
C End-stopper Spring CHRONO
Contact CHRONO SMC
Moving CHRONO
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E Energy Damper CHRONO
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Tagliafierro et al., 2022



WAVE ENERGY CONVERTERS

Label dp [m] | contact_distance [m]
Case @ R/5 0.5dp
Case @ R/5 0.1dp
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WAVE ENERGY CONVERTERS
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UPPSALA WEC

z[m]

x[m]
Tagliafierro, B., Martinez-Estévez, l.,
Dominguez J.M., Crespo, A.J.C., Goteman, M.,
Engstrom, J., Gdmez-Gesteira, M. (2022). A
numerical study of a taut-moored point- o _ .
absorber wave energy converter with a linear Kat5|do.n|otak|, E., ,& Goteman, M. (2022).
Numerical modeling of extreme wave

power take-off system under extreme wave _ _ , , _
conditions. Applied Eneray 311 interaction with point-absorber using

. . OpenFOAM. Ocean Engineering, 245
https://doi.org/10.1016/j.apenergy.2022.1186
29p //doiorg/ /}-apenergy doi:10.1016/j.0ceaneng.2021.110268
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FLOATING OSCILLATING SURGE WAVE ENERGY CONVERTER

Sandia
2 flaps attached to a submerged moored platform National

Laboratories
Platform includes a Power Take-Off (PTO) box
https://youtu.be/OUxbaEC2K6Y




WAVE ENERGY CONVERTERS
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WAVE ENERGY CONVERTERS
FOSWEC?2 (R5C)
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FOSWEC - EXTREME WAVES
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OUTLINE

6. Conclusions



CONCLUSIONS

An SPH framework can be both as accurate as other CFD solvers;

= A wide variety of structures can be simulated,;

Find the right balance between runtime and accuracy;

GPU-accelerated hardware.



FUTURE WORK ‘ i
EPhysLab
= |nvestigation of more complex systems;

= |nvestigate Control effects on the structure performance

for extreme events.
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