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Motivation

• Multitude of tools used to manage software projects
• Source control management, issue trackers, change management tools, Kanban/Trello boards, automated 

build/test systems, chat apps (Slack/Mattermost), wikis & forums, web hosting, …

• Why?
• Significant effort required to effectively manage a software project beyond software 

development itself
• Planning and tracking, communication, quality control, ensuring documentation exists and is 

accurate, release management, …

• Code itself requires review and management
• Even solo-run projects need to manage external collaboration
• -> We rely on tools to simplify this process

• “Indeed, the ratio of time spent reading versus writing is well over 10 to 1. We are constantly reading old code as 
part of the effort to write new code. ...[Therefore,] making it easy to read makes it easier to write.” -Robert Martin 
(Clean Code)
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Motivation

• Why GitHub?
• Provides majority of tools listed previously, for free
• Advantageous to use a single service containing all required tools. Benefit 

from cohesion. Only have to learn one interface and “ecosystem”
• Unlimited free public/private repositories. Educational packages available to 

support students/teachers
• Free CI (automated testing) pipelines with GitHub Actions
• Is the de facto standard

• Why not GitLab, or …?
• More cluttered and complex user interface
• Lower visibility than GitHub (100k users vs. 40M)1,2, smaller community
• Focused on “complete DevOps” platform rather than developer productivity
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Overview

• Creating a high-quality, accessible repository
• What information should be available and easy to find

• Writing an effective README in markdown

• Easily searchable & navigable directory layout

• Automatically publishing documentation and static webpages

• Effectively managing collaboration
• Within your own team, and with external contributors

• Issues, pull requests, CI, and code reviews

• Code linters, formatters

• Project boards, milestones, wikis
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Overview

• Miscellaneous features
• GitHub CLI & Desktop

• Dependabot and automatic vulnerability scanning

• Managing teams and permissions

• Integrations aplenty

• …

• Discussion & Conclusions
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Overview

• Won’t cover: Version Control & Git
• No valid excuse for not using version control in your project!

• Git is the most widely used today. Plenty of learning resources available, e.g.
• Software Carpentry Tutorial: https://github.com/swcarpentry/git-novice

• ARCHER Virtual Tutorial: https://www.youtube.com/watch?v=P6drmyCNEWU

• Basic understanding of git and git branches is sufficient for this session

• Many interactive and visual tools available – GitHub Desktop

• Already familiar with GitHub?
• Great – will also cover some best practices and lesser-known features
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Overview

• Disclaimer
• Contains some opinionated content

• Not in any way endorsed or sponsored by GitHub!

• Discussion encouraged – please use chat or “raise your hand”
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Creating a high-quality, accessible repository

• Goals
• Ensure your project is easy to find, use, and learn. Provide a means for users 

to interact and provide feedback

• Ensure your team, the primary users of your repository, have low friction in 
getting their tasks done



Creating a high-quality, accessible repository

• What does that look like?

• Low-quality, inaccessible
• No landing page or README

• Basic README in plain text, no links to relevant content, little detail

• No visible documentation

• All documentation contained in a single Word document

• Every file in the top-level directory

• No means of contact (i.e. issue tracker disabled)

• All above are real examples…

• High-quality, accessible
• Anything other than the above



Creating a high-quality, accessible repository

• High-quality, accessible
• Code files - structured in directories and easy to navigate

• Detailed README markdown file, with links and useful sections 

• Few clicks required to find the most pertinent information

• Open issue tracker with templates

• Documentation available

• Guidelines for contributions

• Webpage (optional – but GitHub covers this also)

• View releases and version history in a CHANGELOG

• Licence file



Source Code Layout

• Use a standard, clear directory layout
• src/ for source code

• tests/ data/ docs/ etc.

• Language dependant – some have prescribed layouts

• Look at some popular projects for examples

• Tips
• Press “t” to perform a fuzzy file search in the GitHub UI

• “Hide” meta / utility files by using dot prefix
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README.md

• The landing page – automatically detected and rendered by GitHub

• Should include
• Project summary and purpose

• Links to other sections and content

• Build/usage instructions

• Usage examples

• FAQ

• Contributing guidelines (or as a separate file)
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Markdown

• Plain-text format which can be rendered into HTML

• Extremely simple format to write and read, even unrendered in terminal

• Headings, text formatting (bold, italics), lists, links, images, tables, 
footnotes, formatted code snippets, …

• Searchable

• More forgivable than LaTeX. One mistake won’t break your whole doc

• Several markdown “flavours” exist. GitHub markdown is the safe option

• Tips
• Markdown can be “compiled” to PDF for distribution if needed

• Can write HTML elements into markdown for more complex things

• reStructuredText (RST) for more technical documentation
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Markdown
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Issue tracker

• Main contact point for your project
• Bug reports, feature requests, Q&A 

• Problem: Users don’t provide detailed bug reports. Solution: Provide 
issue templates. (also for Pull Requests)

• Prefer text over screenshots (searchability)

• Separate discussions (forums) coming soon
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Documentation

• Write some.

• Basic build & usage instructions sufficient. Bonus points for FAQ, 
common issues etc.

• Many different levels
• Keep in plain text (i.e. markdown) and include in repo

• Wiki to arrange larger collections of documents

• Documentation generation & hosting, i.e. GH Pages, or Sphinx + ReadTheDocs
• Pages easy to configure with pre-built templates. Published to “yourproj.github.io”

• Generate simple static website from markdown or RST

• “Continuous Documentation” – docs are built, tested, and published with every commit

• See https://cirrus.readthedocs.io/en/master
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Versioning & Releasing

• Pick a versioning scheme. SemVer most common
• Major.Minor.Patch

• https://semver.org/

• Keep a CHANGELOG https://keepachangelog.com
• Reduces need for “git archaeology”

• Use Git tags and GitHub releases
• Upload distributable copies of your code in many formats

• Don’t require that the user has root access to install
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Versioning & Releasing
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Licences

• Add one

• Often not considered but important
• States how others can safely use, share, modify your work

• Potential users may not be permitted to use software that doesn’t display a 
licence

• https://choosealicense.com/ can help you pick one depending on 
situation

• GitHub automatically detects and displays LICENSE files

• Make sure you are permitted to share
• Ask if unsure
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Effectively managing collaboration
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Effectively managing collaboration

• Goals
• Use built-in GitHub tools to ease effort of managing your project

• Ensure contributions can be made with little friction



Managing issues

• Main contact point for your project
• Bug reports, feature requests, Q&A

• Closed/resolved issues are useful documentation to refer to

• Issue assignment

• Labels to classify and help future searches

• Reference issues in commits / PRs, and
automatically close
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Git workflow

• How do users contribute to your project?

• Git branching model. Single main branch, with “feature” branches 
which are merged back to main via a Pull Request (PR)

• For external contributors -> fork and merge

• Many workflows possible – discuss with your team, and document!

• Tips
• Can commit directly in GitHub UI, and automatically branch and create PR if 

needed. Great for small documentation fixes

• Can configure branch rules to force all changes to be via a reviewed PR

• More on PRs soon, but first…
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Tests

• Write some.

• Document how users should run tests when working with the code

• Will assume you already have tests for following sections
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Linters & Formatters

• Linters
• Tools to scan code (statically & dynamically) and report on common mistakes, warnings
• Many to choose per language (python: mypy, flake8, pylint)

• Formatters
• Tools to warn or re-format code to ensure a particular agreed on code “style”
• Some languages have recommended styles and even built-in formatters (gofmt, rustfmt)

• Recommendation: use both
• Act as “gates” to ensure quality
• Many benefits e.g. ease of code review  & common style
• Drawbacks: misconfigured or excessive tools like this may actually increase friction for contributors

• Tips
• Use pre-commit to help users manage and run your linters & formatters. Ensures they are run (and 

pass!) before commit is made
• Run them in your CI as well (pre-commit-ci)
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Linters & Formatters
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Continuous Integration (CI)

• In short: automatically runs your tests on every commit to ensure 
success

• Aim is to uncover bugs at any point before release / production –
“push left”

• Free and built-into GitHub these days – GitHub Actions

• Acts as another “gate” to ensure high-quality changes

• Not just tests. CI can run linters, formatters, code analysis tools, 
workflow steps, automatic publishing of releases…
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Pull Requests

• How do changes make it into your project?
• Contributors make changes, then open Pull Request
• CI runs your tests, linters, formatters etc.
• Code review!
• Accept and merge, or feedback and request changes

• Also supports templates (have they created tests, updated documentation, 
…)

• Code review
• Dependant on project type. Useful to build knowledge in team
• Do: be fair and balanced
• Don’t: Nit-pick minor issues (linters/formatters should remove these)s

• Tips
• Use CI and automated checks to ease the PR process and reduce manual effort 

involved
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Pull Requests
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Project Boards

• Kanban/Trello style boards to visualise current project tasks and 
workflow

• Can be automated to automatically update when issues/PRs resolved

• May encourage contributions
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Interacting with Contributors

• Tricky topic, but worth mentioning

• Tips
• Picture that you’re actually speaking to whoever you’re typing at (might be 

difficult to recall what that’s like…). Comments are public
• Treat bug reports and pull requests as opportunities to improve your project
• Bug reports are not personal attacks!

• Conversely
• You have no obligation to add a particular feature in your project (which you 

will then have the burden to support forever)
• Easy to ignore issues and PRs that don’t follow your templates!

• Consider that many open source contributors are volunteering their 
own time

EPCC, The University of Edinburgh 38



Discussion
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Misc. Features

• Wikis are backed by a separate git repo – can clone and update locally

• GitHub CLI and Desktop

• Dependabot for automated dependency updates
• Now built-into GitHub

• Marketplace of pre-built tools, integrations

• Security / automated code scanning tools
• LGTM (looks good to me!)

• Manage permissions across your repositories / teams

• Dark mode…
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Misc. Features
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Summary

• Lots of “extra” effort involved in managing software projects. Use 
GitHub workflows and automated tools to ease this
• Ensure your project is easy to find, use, and learn. Provide a means for users 

to interact and provide feedback

• Ensure your team, the primary users of your repository, have low friction in 
getting their tasks done

• Ensure contributions can be made with little friction

• Key takeaways
• Learn to write and use Markdown

• Use Issue and PR templates to reduce review effort

• Use linters, formatters, and CI to ensure quality control
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