
1

TECHNICAL REPORT FOR ARCHER2-PROJECT-eCSE11-7

eCSE Title: “High Performance Algorithms for the Computation of the Hardy Function –

Dissemination & Development”

PI Name: Dr D M Lewis (University of Liverpool).

Technical Staff: Dr Mario Antonioletti (EPCC, The University of Edinburgh),

Dr A. R. Brereton (University of California, Berkeley).

Abstract

In 2011 G. A. Hiary devised a computational algorithm for the Hardy function 𝑍(𝑡),

requiring just 𝑂(𝑡1/3{𝑙𝑜𝑔(𝑡)}𝜅) operations. This compares to 𝑂(√𝑡) operations necessary

for computing 𝑍(𝑡) using the classical Riemann-Siegel formula. The methodology

involved the sub-division of the Riemann-Siegel formula into sequences of quadratic

Gauss sums of various lengths 𝑁. Such sums can be computed rapidly, in 𝑂(𝑙𝑜𝑔(𝑁))

operations, using a standard recursive scheme. Subsequently, the PI developed a similar

algorithm for 𝑍(𝑡) with an 𝑂((𝑡 𝜀𝑡⁄)1 3⁄ {𝑙𝑜𝑔(𝑡)}2) operational count, accurate to a tolerance

scale 𝜀𝑡 in the relative error. Although constructively analogous, the sub-division into

quadratic sums was applied to a new asymptotic formula for 𝑍(𝑡), giving the new

algorithm an original formulation. This report presents a summary of some significant

advancement of these ideas. The new asymptotic formulation for 𝑍(𝑡) can be extended

beyond quadratic Gauss sums, to encompass more complex sub-sequences of generalised,

𝑚𝑡ℎ-order, Gauss sums of progressively increasing length. This is attractive,

computationally, because as the length of the respective sums increases, the number

needed to express 𝑍(𝑡) falls away. If the above recursive scheme could be adapted to

compute 𝑚𝑡ℎ-order Gauss sums in an analogous manner to the quadratic case, the overall

computational demand for calculating 𝑍(𝑡) would drop substantially. The main aim of this

project was to develop public, open access, source code, founded upon these theoretical

insights, capable of delivering significant computational benefits to the wider

mathematical and coding community. The report focuses mainly on the source code

developed for the cubic 𝑚 = 3 sum case. The specific parameterisation of the cubic sums

makes them amenable to rapid computation, utilising a similar, but more powerful,

recursive scheme to that implemented for the quadratic case. The net result is a

computational algorithm for 𝑍(𝑡) with a reduced 𝑂((𝑡 𝜀𝑡⁄)1/4{𝑙𝑜𝑔(𝑡)}3) operational count

for 𝑡 ∈ [1023−32], to high accuracy. Sample computations demonstrate practical support to

these findings.

 Keywords: The Hardy function, generalized Gauss sums, Riemann zeta computations

2

Mathematical Foundations

 The starting point for any algorithm designed to facilitate the computation of the Hardy

Function 𝑍(𝑡) is a suitable asymptotic approximation valid for large 𝑡. The classical

approximation, utilised for many years, is the famous Riemann-Siegel formula (RSF)

 𝑍(𝑡) = 2 ∑
𝑐𝑜𝑠(𝜃(𝑡) − 𝑡𝑙𝑜𝑔(𝑁))

√𝑁

𝑁𝑡

𝑁=1

+ 𝑂(𝑡−1/4). (1)

Here 𝑁𝑡 = ⌊√𝑡 2𝜋⁄ ⌋ and the 𝑂(𝑡−1/4) term is easily computed from standard functions [1]. The

RSF is an 𝑂(𝑡1/2) operational method of computation (since the main term consists of

𝑂(𝑡1/2) summands) and is perfectly adequate for moderately large values of 𝑡 ∈ [102, 1015].

 Beyond this range more efficient computational methods [2] are necessary. For the code

developed under this project an algebraically more complex, hybrid, asymptotic formula

discovered by the PI [4, 5] is utilised. This is given by

 𝑍(𝑡) = 2 ∑
𝑐𝑜𝑠(𝜃(𝑡) − 𝑡𝑙𝑜𝑔(𝑁))

√𝑁

𝑁𝐶(𝑚)

𝑁=1

+ 𝑍𝑃(𝑡, 𝑚) + 𝑂(𝜀𝑡), (2)

where 𝑁𝐶(𝑚) = ⌊(𝑡 𝜀𝑡⁄)1 (𝑚+1)⁄ 𝑙𝑜𝑔(𝑡) √𝜋⁄ ⌋, 𝑚 = 2,3, … and 𝜀𝑡 ≪ 1 is a user prescribed

tolerance scale, bounding the relative error in the calculation. Notice that the first part of this

approximation is formed by main term of the RSF, but the number of summands rapidly falls

away as 𝑚 is increased. The missing summands, lying between [𝑁𝐶(𝑚), 𝑁𝑡], which form the

bulk of the calculation, are replaced by a second partial sum 𝑍𝑃(𝑡, 𝑚), given by

 𝑍𝑃(𝑡, 𝑚) = 𝑇𝑎+𝜀 + ℋ(𝑡)2√2 {∑
cos (

𝑡
2

{𝑙𝑜𝑔(𝑝𝑐) +
1

𝑝𝑐
+ 1} +

𝜋
8

)

(𝛼2 − 𝑎2)
1
4

[1 + 𝑂(𝑡−1/8)]

𝑎+𝑏

𝛼>𝑎
𝑜𝑑𝑑

} +

 ∑
ℋ(𝑡)2√2

(𝛼𝐸
2 − 𝑎2)

1
4

Re{𝑒i𝜔+(𝑝𝑐)𝑆𝑀𝑡
−(𝑚)(Φ1..𝑚

+) + 𝑒i𝜔−(𝑝𝑐)𝑆𝑀𝑡
−(𝑚)(Φ1..𝑚

−)}[1 + 𝑂(𝜀𝑡)]

𝛼𝐶(𝑚)

𝛼𝐸>𝑎+𝑏

𝑠𝑡𝑒𝑝 4𝑀𝑡
−(𝑚)+4

. (3)

Here 𝑎 = √8𝑡 𝜋⁄ , 𝑏 = 2⌊𝑡1 (𝑚+2)⁄ ⌋, 𝛼 ∈ 2ℕ + 1, 𝛼𝐸 ∈ 2ℕ, ℋ(𝑡) ≈ 1 +
1

32𝑡2, 𝛼𝐶(𝑚) ≈
(𝜀𝑡𝑡𝑚)1 (𝑚+1)⁄

√𝜋𝑙𝑜𝑔(𝑡)

and 𝑝𝑐(𝛼) = 2(𝛼 𝑎⁄)2[1 + (1 − (𝑎 𝛼⁄)2)1/2] − 1 ∈ [1, ∞). The significant part of this formula,

from a computational point of view, are the generalised Gauss sums that make up the real part

of the second term. Generalised Gauss sums are defined by

 𝑆𝑀𝑡
−(Φ1..𝑚) = ∑ 𝑒𝑥𝑝[2𝜋i(Φ1𝑘 + Φ2𝑘2 + Φ3𝑘3 + ⋯ + Φ𝑚𝑘𝑚)]

𝑀𝑡
−

𝑘=0

. (4)

The number of summands in (3) is defined (to the nearest integer) by

 𝑀𝑡
−(𝑝𝑐, 𝑚) =

1

2√𝜋
[
𝜀𝑡(𝑝𝑐2 − 1)𝑚𝑡(𝑚−1) 2⁄

22(𝑚−1)𝑝𝑐(3𝑚−1) 2⁄
]

1 (𝑚+1)⁄

. (5)

3

Notice that this number increases with 𝑚, which means that the number of independent

Gauss sums in (3) falls off with 𝑚, which potentially increases the speed of computing

𝑍𝑃(𝑡, 𝑚).

 The crux of the algorithms developed for this project is a methodology (see below) for the

rapid computation of Gauss sums (4) using 𝑂(𝑙𝑜𝑔(𝑀𝑡
−)) operations for the cases 𝑚 = 3 cubic

and 𝑚 = 4 quartic respectively. This is a vast saving compared to computing (4) longhand

and drastically reduces the number of operations required to evaluate second partial sum (3).

When combined with (2) the resulting algorithms allow for the computation of 𝑍(𝑡) using

only 𝑂 (𝑡1/4(𝑙𝑜𝑔(𝑡))
3

) standard operations [6], which is much more efficient than the RSF, or

indeed the previous state of the art 𝑂(𝑡1/3(𝑙𝑜𝑔(𝑡))
𝜅

) algorithm developed by [2] (which in

essence is a method utilising 𝑚 = 2 quadratic sums). Ideally one would like to apply this

rapid computational procedure to Gauss sums defined for any value of 𝑚, which would

produce an 𝑂(𝑡1/(𝑚+1)(𝑙𝑜𝑔(𝑡))
𝜅

) operational algorithm for calculating 𝑍(𝑡) itself.

Unfortunately, technical difficulties rapidly reduce the utility of the procedure beyond the

quartic Gauss sum case.

 Since most of the source code developed under this project and posted in the GitHub

repository

https://github.com/dml2391/Hardy-function-fastcodes

utilises cubic Gauss sums, it is worth stating the initial values of the parameters Φ1, Φ2 and

Φ3 which define (4).

Φ1
±(𝑝𝑐) =

1

2(𝑝𝑐 − 1)
±

𝑎

4√𝑝𝑐
±

𝑝𝑐3 2⁄

𝑎(𝑝𝑐 − 1)3
 ,

Φ2
±(𝑝𝑐) =

1

2(𝑝𝑐 − 1)
±

2𝑝𝑐3 2⁄

𝑎(𝑝𝑐 − 1)3
 ,

 Φ3
±(𝑝𝑐) = ±

4𝑝𝑐3 2⁄

3𝑎(𝑝𝑐 − 1)3
. (6𝑎, 𝑏, 𝑐)

Simple symmetry properties and complex conjugation enable any values of the parameters

Φ1
±(𝑝𝑐) and Φ2

±(𝑝𝑐) to be shifted, so that Φ1 ∈ (− 1 2, 1 2⁄)⁄ and Φ2 ∈ (0, 1 4⁄) respectively.

The important point to note is that the value of Φ3 = 𝑂(𝑡−1/2) is always very much smaller

than either Φ1 or Φ2. This observation is crucial to what follows.

https://github.com/dml2391/Hardy-function-fastcodes

4

Methodology for the Rapid Computation of Gauss sums with small higher order

coefficients 𝚽𝒋 = 𝑶(𝒕𝟏−𝒋/𝟐)

 Using a variation of the Euler-Maclaurin Summation method [e.g. 8], it is possible

formulate an exact expression for any Gauss sum in the form

 𝑆𝐿𝑗
(Φ1..𝑚:𝑗) =

𝑒−i𝜋 4⁄

√2Φ2:𝑗

∑ 𝑒2𝜋i𝑔(𝑐)

⌊𝜉⌋

𝑛=𝐻(Φ1)

+ 𝑠𝑚𝑎𝑙𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠. (7)

The “small corrections” are algebraically complex 𝑂(1) terms, but relatively simple first

order estimates are easy to compute. (They are derived in [6] and specifically listed in the

detailed coding documentation [7], under subroutine Q, posted the repository.) The subscript

value 𝑗 = 1 denotes the parameters of the initial Gauss sum to be estimated. The secondary

sum on the right-hand side of (7) consists of 𝐿𝑗+1 = ⌊𝜉⌋ ≈ ∑ 𝑞Φ𝑞𝐿𝑗
𝑞−1𝑚

𝑞=2 ≈ 2Φ2𝐿𝑗 < 𝐿𝑗

summands, since 2Φ2 < 1 2⁄ . Hence it is a shorter sum than the left-hand side. The exponent

term in (7) is defined by

 𝑔(𝑐) = 𝑛𝑐 − ∑ Φ𝑞𝑐𝑞

𝑚

𝑞=1

 𝑤𝑖𝑡ℎ 𝑛 − Φ1 = ∑ 𝑞Φ𝑞𝑐𝑞−1

𝑚

𝑞=2

. (8𝑎, 𝑏)

Now provided the saddle point 𝑐, satisfying (8b), can be expressed in closed form as a

function of the parameters 𝑛 and Φ1..𝑚:𝑗, then the exponent (8a) would reduce to a

polynomial of degree 𝑚 in 𝑛, with a new set of coefficients Φ1..𝑚:𝑗+1. In which case (7)

would generate the relationship

 𝑆𝐿𝑗
(Φ1..𝑚:𝑗) =

𝑒−i𝜋 4⁄

√2Φ2:𝑗

𝑆𝐿𝑗+1
(Φ1..𝑚:𝑗+1) + 𝑠𝑚𝑎𝑙𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠, (9)

linking the longer Gauss sum on the left-hand side to a shorter Gauss sum on the right-hand

side. In isolation, this result is of little import, since 𝐿𝑗+1 would still be a large integer.

However, if (9) is applied recursively, a hierarchal chain of Gauss sums is formed, connecting

the original Gauss sum of length 𝐿1 to a vastly smaller, kernel Gauss sum, of length 𝐾, via at

most 𝑗 ≈ 𝑙𝑜𝑔(𝐿1 𝐾⁄) 𝑙𝑜𝑔(2)⁄ links. Hence, computation of the kernel sum, followed by the

recursive substitution of each intermediate sum value in the hierarchal chain leads, after

𝑂(𝐾 𝑙𝑜𝑔(𝐿1 𝐾⁄) 𝑙𝑜𝑔(2)⁄) operations, to an estimate for the initial Gauss sum as desired. Since

𝐾 ≪ 𝐿1, this provides a vast computational saving compared to 𝑂(𝐿1) operations needed to

compute the initial sum directly.

 For the quadratic case 𝑚 = 2 this recursive scheme can be applied ad infinitum. That is

because the saddle point solution of (8b) is linear in 𝑛, meaning that (8a) is just another

quadratic [9] in 𝑛. For cubic sums 𝑚 = 3 and above this is not the case. However, because in

this instance the initial parameter value of Φ3 is so very small, the sums themselves remain

sufficiently quadratic in character for the recursive scheme (9) to be applied multiple times.

Specifically, one defines

5

 𝑐𝑚−1 = ∑ 𝐶𝑞(Φ2,3,…𝑞+1)
(𝑞 + 1)𝑦𝑞

𝑥2𝑞−1

𝑚−1

𝑞=1

, (10)

where 𝑥 = 2Φ2 ∈ (0, 1/2) and 𝑦 = 𝑛 − Φ1 > 0, to be the solution to (8b) truncated at the 𝑚𝑡ℎ-

order in 𝑦. The constant coefficients 𝐶𝑞(Φ2,3,…𝑞+1) are complicated functions of the Φ𝑗, but

are relatively easy to calculate using any reasonably efficient computer algebra package. See

the Mathematical Appendix of [6]. Substituting (10) into (8a) one obtains the approximation

 𝑔𝑚(𝑐𝑚) = 𝑦𝑐𝑚 − ∑ Φ𝑞𝑐𝑚
𝑞

𝑚

𝑞=2

= ∑
𝐶𝑞𝑦𝑞+1

𝑥2𝑞−1
+

𝑚−1

𝑞=1

∑ 𝐸𝑞

∞

𝑞=𝑚

, (11)

for the exponent 𝑔(𝑐), truncated at the (𝑚 + 1)𝑡ℎ- order in 𝑦. The error, given by the

secondary sum in (11), is usually small enough to be neglected. In which case (9) links two

Gauss sums of the same order. Specifically, for the cubic case the parameters of the 𝑗𝑡ℎ and

(𝑗 − 1)𝑡ℎ sums satisfy

Φ0,𝑗 =
Φ1,𝑗−1

2

2𝑥𝑗−1
+

Φ1,𝑗−1
3 Φ3,𝑗−1

(𝑥𝑗−1)
3 , Φ1,𝑗 = −

Φ1,𝑗−1

𝑥𝑗−1
−

3Φ1,𝑗−1
2 Φ3,𝑗−1

(𝑥𝑗−1)
3 ,

 Φ2,𝑗 =
𝑥𝑗

2
=

1

2𝑥𝑗−1
+

3Φ1,𝑗−1Φ3,𝑗−1

(𝑥𝑗−1)
3 , Φ3,𝑗 = −

Φ3,𝑗−1

(𝑥𝑗−1)
3 . (12)

 As each intermediate Gauss sum in the hierarchal chain is set up, the value of the secondary

sum in (11) is monitored. If this error term exceeds some user prescribed threshold, this

indicates that the 𝑚𝑡ℎ- order approximation solution to (8b) is insufficiently accurate. So

instead, the (𝑚 + 1)𝑡ℎ- order approximation is substituted. Hence a cubic sum would now

move up to become a quartic sum. If the new error term lies below the threshold, then the

computation moves on to the next link in the hierarchal chain. If not, then the order is

increased again and again, until the error criterion is satisfied. This procedure continues until

the length of the 𝑗th sum of the chain 𝐿𝑗 < 𝐾 which defines the length of the kernel sum (𝐾 is

a “cut-off” integer derived from the user prescribed values of 𝑡 and 𝜀𝑡), at which point the

hierarchal chain is complete. The kernel sum is then computed exactly and the resulting value

iterated back up the hierarchal chain to establish an estimate for the initial Gauss sum as

desired. These operations form the basis of the following algorithm.

Algorithm MGS An algorithm for the recursive computation of a generalized 𝑚𝑡ℎ-order

Gauss Sum 𝑆𝐿(Φ1..𝑚), with 𝐿 ≫ 1, 𝑚 ≥ 3 and coefficients Φ3..𝑚 satisfying asymptotical small

conditions such as (6c) or extensions thereof.

Replace 𝑆𝐿(Φ1..𝑚) by 𝑆𝐿1

𝑠1(Φ1..𝑚1,1) so that Φ1..𝑚1,1 ∈ (−1 2⁄ , 1 2⁄), using symmetry conditions. Let

𝑠𝑗 = ±1 to indicate if the complex conjugate sum is to be used.

Fix positive integer parameter 𝐾 > 30 and small real 𝜖 > 0 (typically 𝜖 ≤ 10−2 is suitable).

Let 𝜔 = 𝑒i𝜋 4⁄ .

6

Compute for 𝑗 = 2, 3, …

a) Set 𝑚𝑗 = 𝑚𝑗−1. Compute 𝐿𝑗 = ⌊∑ 𝑞Φ𝑞𝐿𝑗−1
𝑞−1𝑚𝑗

𝑞=2
⌋. Set 𝑦𝑚𝑎𝑥 = 𝐿𝑗 − Φ1,𝑗−1.

b) Compute Φ0…𝑚𝑗,𝑗 from Φ0…𝑚𝑗,𝑗−1, using (12).

c) 𝑥𝑗 = 2Φ2,𝑗; 𝑥𝑗 = 𝑥𝑗 − ⌊𝑥𝑗⌉; Φ2,𝑗 = 𝑥𝑗 2⁄ ; 𝑠𝑗 = sgn(−𝑥𝑗); Adjust each Φ1,2…𝑚𝑗,𝑗 using

symmetry conditions to ensure they all lie in the range (−1 2⁄ , 1 2⁄] and multiply each

one by sgn(𝑥𝑗), so in particular Φ2,𝑗 > 0.

d) Compute the 𝑚𝑎𝑥 |2𝜋𝐸𝑚𝑗
|.

e) If |2𝜋𝐸𝑚𝑗
| < 𝜖 carry on to f). Otherwise set 𝑚𝑗 = 𝑚𝑗 + 1, Φ𝑚𝑗,𝑗−1 = 0 and repeat b)-e)

using the next order extension of (12).

f) If 𝐿𝑗+1 < 𝐿𝑗 < 𝐾 and 𝐿𝑗 > ⌈Φ1,𝑗−1⌉, set 𝑗𝐾 = 𝑗, otherwise set 𝑗𝐾 = 𝑗 − 1. If 𝐿𝑗+1 < 0 <

𝐾 < 𝐿𝑗, set 𝑗𝐾 = 𝑗. If 𝐾 < 𝐿𝑗 < 𝐿𝑗+1, set 𝑗𝐾 = 𝑗. If none of these, repeat a)-f).

g) Compute the sum 𝑆𝐿𝑗𝐾

𝑠𝑗𝐾 (Φ1..𝑚𝑗𝐾
,𝑗𝐾

) exactly. N.B. if Φ1,𝑙𝑗𝐾−1 > 0 the summands

commence at 𝑛 = 1 rather than 𝑛 = 0, to account for the step function in (7). This

adjustment must also be after each iteration prescribed in h) below.

h) From this starting point compute, for 𝑗 = 𝑗𝐾 − 1, 𝑗𝐾 − 2, … ,1, the following iterations

𝑆𝐿𝑗

𝑠𝑗 (Φ1..𝑚𝑗,𝑗) = {
𝑒2𝜋iΦ0,𝑗+1𝑆𝐿𝑗+1

𝑠𝑗+1 (Φ1..𝑚𝑗+1,𝑗+1)

𝜔|𝑥𝑗|
1 2⁄

+ 𝑠𝑚𝑎𝑙𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠}

𝑠𝑗

.

i) The final iteration 𝑆𝐿1

𝑠1(Φ1..𝑚1,1) gives an estimate to 𝑆𝐿(Φ1..𝑚) = 𝑆𝐿1

𝑠1(Φ1..𝑚1,1) +

𝛿(𝐾, 𝐿, Φ1..𝑚), where 𝛿(𝐾, 𝐿, Φ1..𝑚) is the error term.

 Table 1 shows an illustration of the workings of Algorithm MGS for a cubic Gauss sum

with 𝑡 = 1028 and other parameters derived from (5) and (6). The tolerance scale for the

relative error was set at 𝜀𝑡 = 0.02. This bounds the size of the relative error in the final

estimate, deriving from 𝛿(𝐾, 𝐿, Φ1..𝑚). The algorithm first creates a hierarchal chain of sums

with five links down to a kernel of length 𝐾 = 273. Notice in the first link of the chain the

order new sum remains cubic. But for the next link the error term in (11) exceeds the

designated threshold 𝜖 = 10−2, which prompts the algorithm to increase the order of the sums

from three to four. A further increase in order, from four to six, is necessary to create the final

link. Another link would still be possible, creating a kernel sum of length 𝐿6 ≈ 10. However,

it is best to avoid making the kernel sum too small since its magnitude will start to become

comparable with the "𝑠𝑚𝑎𝑙𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠" in (9), and any discrepancy in computing the latter

will manifest itself in a relatively large error in the final estimate, potentially exceeding 𝜀𝑡.

The kernel sum is now computed, and this value used to calculate estimates for all the sums

in the hierarchal chain. Notice that whilst the absolute value of the error in each estimate

increases with each iteration back up the chain, the corresponding relative error quickly

stabilises to a value of 0.0017 ≪ 𝜀𝑡 = 0.02 as expected. The bulk of the relative error always

7

𝑙 𝐿𝑙 𝑚𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝐺𝑎𝑢𝑠𝑠 𝑠𝑢𝑚
𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝛷0−𝑚𝑙

𝑠𝑙

 1 2100836 3 𝛷0 = 0.0
 𝛷1 = 4.577951577 × 10−1

𝛷2 = 4.149941700 × 10−2
 𝛷3 = 2.251742112 × 10−16

−1

 2 174367 3 𝛷0 = 1.262526209 × 100
𝛷1 = 4.843182053 × 10−1
𝛷2 = 2.418101414 × 10−2

 𝛷3 = −3.93824450 × 10−13

−1

 3 8433 4 𝛷0 = 2.42508567 × 100
 𝛷1 = −4.85568797 × 10−1
𝛷2 = 1.613103826 × 10−1

 𝛷3 = −3.481682424 × 10−9
𝛷4 = −2.63812477 × 10−18

+1

 4 2719 4 𝛷0 = 3.654090031 × 10−1
 𝛷1 = 5.076154596 × 10−3
𝛷2 = 4.980739785 × 10−2
𝛷3 = 1.036841408 × 10−7
𝛷4 = 1.585086768 × 10−14

−1

 5 273 6 𝛷0 = 1.293349449 × 10−4
𝛷1 = −5.09578458 × 10−2
𝛷2 = 1.933629021 × 10−2
 𝛷3 = −1.048917155 × 10−4
𝛷4 = 4.770974356 × 10−9

 𝛷5 = −2.89012763 × 10−13
𝛷6 = 2.042123848 × 10−17

−1

𝑙 Estimate of
𝑆𝐿𝑙

𝑠𝑙(𝛷1..𝑚𝑙,𝑙)
 Exact Value

𝑆𝐿𝑙

𝑠𝑙(𝛷1..𝑚𝑙,𝑙)
|𝑒𝑟𝑟𝑜𝑟|

Relative error

 5 As exact value 1.57504
+ 14.86040i

 0.0 0.0

4 38.69952
− 29.34762i

38.73012
− 29.23127i

0.1203 0.0025

3 55.47567
+ 65.28449i

55.34872
+ 65.34816i

0.1420 0.0017

2 −361.23492
− 148.67401i

−361.27895
− 148.02249i

0.6530 0.0017

1 −421.06045
+ 1288.25289i

−422.86094
+ 1286.81109i

2.3066 0.0017

Table 1. Illustration of the reduction and computation of an initial 3𝑟𝑑- order cubic

Gaussian sum achieved using Algorithm MGS . The initial sum is prescribed by the

parameter values: 𝑡 = 1028, pivot integer 𝑎𝑒 = 310304270951266.0 ≡ 𝑝𝑐 =

13.048362 ….length 𝐿1 set from (5) and 𝜀𝑡 = 0.02. The algorithm creates a hierarchal

chain of five sums, finally reaching a 6𝑡ℎ- order kernel sum of length 𝐿5 = 273. The kernel
𝑍(𝑡), via equations (2 & 3). Since this is a vastly larger calculation, it is obviously desirable

to keep the operational expenditure down to an absolute minimum. For the Hardy function is

then computed exactly and the value iterated back up the chain to produce the desired

estimate.

8

accrues with the first iteration and always arises from errors occurring in the evaluation of the

"𝑠𝑚𝑎𝑙𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠". In principle these can be computed to arbitrary accuracy, but this

involves additional operational expenditure. If Algorithm MGS was being employed in

isolation, this would be of little or no consequence. However, in this application Algorithm

MGS must be engaged millions of times in order compute the final value of 𝑍𝑃(𝑡, 𝑚) via (3),

and any additional operational expenditure must be kept to a minimum. This trade-off

between operational expenditure and computational accuracy is resolved by presetting the

cut-off integer 𝐾 from the user prescribed variables 𝑡 and 𝜀𝑡, to ensure the relative error in the

calculation of 𝑍(𝑡) always lies below the designated tolerance scale.

Sample Computations of 𝒁(𝒕) for large 𝒕 values

 Utilising Algorithm MGS it is now possible to develop codes to compute the Hardy

function from equations (2 & 3) much more efficiently than previously possible. The main

source code developed under this project is for the cubic case with 𝑚 = 3. Table 2 shows

some 𝑍(𝑡) calculations carried out at some very particular 𝑡 values where |𝑍(𝑡)| is unusually

large. Large |𝑍(𝑡)| are of interest theoretically, since hypothetical violations of the famous

Riemann Hypothesis would manifest themselves in the immediate vicinity of a large peak in

the value of |𝑍(𝑡)|. But in this instance, they provide a useful practical testing ground for the

repository source code, since the largest absolute errors (as opposed to the relative error) in

the 𝑍(𝑡) calculations will be found at these points. Table 2 shows the results of some of these

calculations for values of 𝑡 > 1028, with the relative error tolerance scale set to 𝜀𝑡 = 0.005

throughout.

 Those jobs in the table for 𝑡 ≤ 3.96 × 1030 were run on ARCHER2 using four nodes. Typical

run times ranged from 1.4 to 9.2 hours (5.5-36.8 Computational Resources CUs, or 704-4710

Core Hours CPUhs respectively). The larger jobs, those spanning 𝑡 ∈ [6.08 × 1030, 5.00 ×

1031], were run using 8 nodes and took between 4.7 and 10.5 hours (38-84 CUs or 4864-

10752 CPUhs). The three largest jobs in the table were run, partly, using the resources made

available during the ARCHER2 capability days staged in September 2024. These sessions

allowed users free access to many nodes for the submission of large-scale jobs, to test out

their respective code’s performance to the maximum. The jobs shown in the table utilised

1024 nodes for one hour, but they did not run quite as fast as anticipated and the calculations

had to be completed subsequently using a standard 8 node setting. The capability days proved

very useful for the code development of this project, highlighting certain small, easily

correctable, errors in the restart procedures that only manifested themselves at the highest

values of 𝑡.

 The accuracy of the computations is highlighted by comparison with similar calculations to

be found in the published databases in [3] and [10] and is extremely high. All the relative

errors are less than 10−5, five hundred times less than the prescribed relative error tolerance

scale 𝜀𝑡 = 0.005. The absolute errors are typically good to one or two decimal places, which

is excellent when considering they are at their maximum when |𝑍(𝑡)| is large. For most 𝑡

values the errors will be much smaller than this. Of course, if a user requires a higher degree

of accuracy in their calculations, then this can be achieved by specifying a smaller tolerance

scale 𝜀𝑡. This will produce a more accurate run, albeit for a slight increase in run time. (Other

aspects of the operational run time of the cubic code are illustrated in the one-page summary

section of the accompanying final report on this project.)

9

 𝑡 value

 𝑍(𝑡)
Cubic 𝑡1/4 code
from this project

 𝑍(𝑡)
𝑡1 3⁄ algorithm of
[2, 7]; ±5 × 10−4

Relative error

|𝜀|
 2.059936512320112518074691006892E28 3803.86727 3803.86539 4.30 × 10−7
 2.483871744715102768284803284373E28 −1517.12399 −1517.11159 8.17 × 10−6
 3.177469531676391818363765436511E28 −9549.91673 −9549.88868 2.93 × 10−6
 4.670914185466097236850548903274E28 9587.87895 9587.85455 2.54 × 10−6
 1.0835660710102772561572011153186E29 7297.78564 7297.75658 3.98 × 10−6
 2.8928607671932530771838054905026E29 10907.57778 10907.55189 2.37 × 10−6
 5.5216641000993128888680863234651E29 −13541.70579 −13541.67744 2.09 × 10−6
 6.9815628897151991613594294046033E29 11187.59076 11187.56821 2.02 × 10−6
 8.0362572859234436312381421877820E29 10282.41019 10282.40085 9.13 × 10−7
 1.42060805696869950116950900347991E30 5045.59913 5045.59024 1.76 × 10−6
 1.90791528718078622313186060719755E30 10242.78033 10242.78831 7.78 × 10−7
 2.40997280874481941027683455628022E30 −9268.18171 −9268.20237 2.23 × 10−6
 3.80547561437862404487369632961007E30 4547.78163 4547.80731 5.64 × 10−6
 3.96223170348329766133173296323307E30 −7483.25069 −7483.25629 7.49× 10−7
 6.08302869527654580706324834685591E30 9729.73977 9729.76572 2.66 × 10−6
 6.63237818782358897400245791070660E30 12010.61542 12010.63042 1.24 × 10−6
 9.83228440804649950062286954013174E30 −10123.63767 −10123.62451 1.30 × 10−6
 1.472969364244678383540127734056387E31 −7707.03675 −7706.96360 9.49 × 10−6
 3.557586000421470624922724880597724E31 13337.02398 13337.12691 7.71 × 10−6
 3.924676458989430915525116928410405E31 16244.39356 16244.47429 4.96 × 10−6
 4.589001484792927188496155886462819E31 9967.75442 9967.80244 4.80 × 10−6
 5.005475723107396211588045467161740E31 −10621.48019 −10621.51326 3.12 × 10−6
 † 9.066617388021913893282064021886284E31 15601.555 15601.620 4.14 × 10−6
 † 2.8609411594551963691214046991910957E32 16093.291 16093.351 3.73 × 10−6
 † 3.1067883362908396566754057659368205E32 16874.148 16874.202 3.20 × 10−6

Table 2. Illustrative calculations of the Hardy function for 𝑡 > 1028 showing the values

obtained using the cubic code developed under this eCSE11-7 project, compared to the

corresponding values listed in [3, 10]. At these very particular 𝑡 values the modulus of

𝑍(𝑡) is unusually large. The relative error tolerance scale was set to 𝜀𝑡 = 0.005 for all the

calculations. † These calculations were carried out using the extended resources made

available during ARCHER2 2024 capability days.

10

 Finally, the repository contains code based upon the 𝑚 = 4 quartic Gauss sum representation

of (3). In theory this should yield an 𝑂 (𝑡1 5⁄ (𝑙𝑜𝑔(𝑡))
3

) algorithm, very much faster than the

cubic case. However, certain technical difficulties render this impossible. The problem

concerns the size of the cubic parameter Φ3 in the relation to the sum length 𝐿 as one moves

down the hierarchal chain. The cubic parameter increases (as can be seen from Table 1) faster

than the sum length declines. At some point in the chain, a condition is reached when

3Φ3𝐿 > 2Φ2 for Φ3 < 0. At this point the solutions to saddle point equation (8b) cease to be

approximately linear and the recursive relationship (9) breaks down. It is still possible to

formulate an expression for the kernel sum by finding numerical, as opposed to analytical,

solutions to (8b). But this comes at a significant operational cost, slowing down the final

algorithm. The upshot is that the quartic code, as it stands, simply represents a somewhat

faster version of the cubic code (it typically runs 25% faster than the corresponding cubic

code for 𝑡 ≤ 1028) rather than the order of magnitude improvement promised if this problem

could be overcome and (9) extended indefinitely. The repository also contains a third code,

which is a multi-value version of the cubic code discussed above. Whilst the cubic code

calculates one value of 𝑍(𝑡) at a specified value of 𝑡, the multi-value code computes up to 15

separate 𝑍(𝑡) values simultaneously, with the cavate that the 𝑡 points must lie close together.

Typically, an interval spacing of ±0.01 is adopted, around a user specified central 𝑡 value. The

extra operational cost of running this multi-valued code is only some 20% over and above

running the single value code, rather than the fifteen times one might expect to be the case.
This offers a user to a rapid means of estimating the position of one of the famous zeta-zeros,

which are the most important feature of the Hardy function. This information in turn can be

used to facilitate Riemann Hypothesis validation calculations across short intervals of 𝑡.

This work was funded under the embedded CSE programme of the ARCHER2 UK National
Supercomputing Service (http://www.archer2.ac.uk).

References

[1] Edwards, H. M. 1974 Riemann’s zeta function, Dover Publications, INC. New York.

[2] Hiary G. A. 2011 Fast methods to compute the Riemann zeta function. Annals of Mathematics 174, 891-946.

[3] Hiary G. A. 2017 Fast methods to compute the Riemann zeta function,

https://people.math.osu.edu/hiary.1/fastmethods.html

[4] Lewis, D. M. 2015 The development of a hybrid asymptotic expansion for the Hardy function 𝑍(𝑡),
consisting [2√2 − 2]√𝑡 2𝜋⁄ main terms, some 17% less than the celebrated Riemann-Siegel formula,
http://arxiv.org/abs/1502.06903

[5] Lewis, D. M. 2017 A computational algorithm for the Hardy function 𝑍(𝑡), utilising sub-sequences of
generalised quadratic Gauss sums, with an overall complexity operational complexity
𝑂((𝑡 𝜀𝑡⁄)1/3{𝑙𝑜𝑔(𝑡)}2+𝑜(1)), http://arxiv.org/abs/1711.01928

[6] Lewis, D. M. & Brereton, A. R. 2025 A computational algorithm for the Hardy function 𝑍(𝑡), utilising sub-

sequences of generalised cubic Gauss sums, with an overall operational complexity 𝑂((𝑡 𝜀𝑡⁄)1/4{𝑙𝑜𝑔(𝑡)}3) for

𝑡 ∈ [1015, 1035], manuscript in preparation for submission to Open Mathematics, see PI.

http://www.archer2.ac.uk/
https://people.math.osu.edu/hiary.1
http://arxiv.org/abs/1502.06903
http://arxiv.org/abs/1502.06903

11

[7] Lewis, D. M. 2025 Hardy Code-Detailed Documentation, GitHub repository

https://github.com/dml2391/Hardy-function-fastcodes

[8] Olver, F. W. J., Lozier, D. W., Boisvert, R. F. & Clark, C. W. 2010 NIST Handbook of Mathematical

Functions, Cambridge University Press.

[9] Paris, R. B. 2008 An Asymptotic Expansion for the Generalised Quadratic Gauss Sum. Applied

Mathematical Sciences 2(12), 577-592.

[10] Tihanyi, N. 2019 Numerical computing of extremely large values of the Riemann-Siegel Z-function. PhD

thesis, Doctoral School of Informatics, Numeric and Symbolic Computations, Eötvös Loŕand University.

https://github.com/dml2391/Hardy-function-fastcodes

