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1. Introduction

Non-equilibrium gas flows pose significant modelling challenges and are prevalent in various

industrial applications and scientific research areas, such as mass spectrometry, low-pressure 

environments, vacuum pumps, micro-electro-mechanical systems (MEMS), high-altitude vehicles, and 

porous media. The Knudsen number (Kn), defined as the ratio of the gas molecular mean free path to 

the characteristic macroscopic length scale of the flow, quantifies the degree of non-equilibrium. 

When the Knudsen number is very small (Kn < 0.001), the no-slip boundary condition applies, and 

continuum theory, specifically the Navier-Stokes-Fourier (NSF) equations, can accurately predict flow 

fields. In the slip regime (0.001 < Kn < 0.1), the NSF equations are applicable if modified to incorporate 

velocity-slip and temperature-jump at the boundaries. For Kn > 0.1, the flow enters the transition regime, 

where the NSF equations fail to provide accurate predictions. In this regime, kinetic theory approaches, 

such as the Boltzmann equation or direct simulation Monte Carlo (DSMC), are used. However, the 

Boltzmann equation's collision term complexity limits its use to simple problems, and DSMC's high 

computational cost restricts its application to high-Kn flows, 2-D simulations, and low-speed problems 

that can take weeks to solve. In the early transition regime (0.1 < Kn  <1 ), the moment method is the 

most effective for capturing rarefied phenomena. It embeds more physical details than the NSF 

equations while only moderately increasing computational cost. 

It has been successfully demonstrated that the moment equations can be applied to a variety of 

classic problems, including Couette flow, Poiseuille flow, and Kramers’ problem, which have all been 

theoretically studied (Gu et al. 2010; Gu and Emerson 2014). Numerical investigations of 2-D driven 

cavity flow (Gu et al. 2009) and flow past a circular cylinder (Gu et al. 2019) further showcase the 

Moment Method potential. However, there is currently no software capable of solving non-equilibrium 

flows in the early transition regime (0.1 < Kn < 1) within 3-D complex geometries with computational 

efficiency comparable to conventional CFD problems. Understanding flow in the transition regime is 

crucial for designing, predicting, and operating a wide range of practical devices. Therefore, it is timely 

and beneficial to develop software that bridges the gap between the continuum approach and kinetic 

theory. 

The project aims to extend the capabilities of the high-order finite-difference method-based 

computational fluid dynamics (CFD) solver, ASTR (Advanced Flow Simulator for Turbulence 

Research). By developing a new module for the Moment Methods, this extension will enable the 

research community to investigate and predict shock waves and turbulence in non-equilibrium rarefied 

gaseous transport up to the early transition regime. These flows present a modelling challenge in 

hypersonic aerospace engineering applications in high-altitude atmospheres (e.g., 70 km above Earth), 

involving three fundamental problems: turbulence, shock waves, and rarefaction. 

2. Extended thermodynamic governing equations

2.1. Conventional hydrodynamic model - the NSF equations 

The traditional hydrodynamic quantities of density, , velocity, ,iu and temperature, ,T

correspond to the first five lowest-order moments of the molecular distribution function. The governing 

equations of these hydrodynamic quantities for a dilute gas can be obtained from the Boltzmann 

equation and represent mass, momentum, and energy conservation laws, respectively, in the non-

dimensional form consistent with the original implementation in ASTR, as: 
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in which, the non-dimensional variables are defined as 
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where ,ou  oT  and o  are reference velocity, temperature and density, respectively. The spatial and 

temporal coordinates ix and t  are normalized by a reference geometry length oL  and time scale 

 o oL u  , respectively, and any suffix i, j, k represents the usual summation convention.  The specific 

heat capacity ratio is   and the Mach number is defined as 
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with the specific gas constant R .  The pressure, p, is related to the temperature and density by the ideal 

gas law. E in the equation (3) is the non-dimensional volumetric energy, defined as  
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However, the stress term, ij , and heat flux term, iq , given in equations (2) and (3) are unknown. The 

classical way to close this set of equations is through a Chapman-Enskog (CE) expansion of the 

molecular distribution function around the Maxwellian, in the non-dimensional form, as: 
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in which   is the normalised viscosity and the angular brackets denote the traceless part of a symmetric 

tensor. A  and qA  are the collision constants listed in Table 1. The Reynolds number is  
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with a reference viscosity o  at the reference temperature oT .  The extent of the non-equilibrium state 

is determined by the Knudsen number by 
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in which   is  the mean free path  defined as  
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From equations (5), (8)-(10), it is ready to get the relationship of ,Kn  Ma  and Re  as 
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It indicates that either the increase of the Mach number or the decrease of the Reynolds 

number can lead to the gas away from the equilibrium state. 

2.2.  A second-moment closure model - the R13 equations 

As the value of Kn   increases, more moments are needed to accurately describe any non-

equilibrium phenomena. Grad (1949) truncated the distribution function to the incomplete third-order 

in Hermite polynomials ( 13Gf ). Grad was one of the pioneers to introduce ij  and iq  as extended 

variables and derived a set of governing equations for them from the Boltzmann equation. For Maxwell 

molecules, the stress and heat flux equations are (Struchtrup 2005), in the non-dimensional form, as: 
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and 
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Here, ijkm , ijR  and   represent the difference between the true value of the higher moments and their 

approximated value with 
13Gf . In Grad’s original approach, such deviations were not introduced, so 

that 0ijk ijm R     which results in the well-known G13 equations. To close the set of equations, 

(1)-(3), (12) and (13), Struchtrup & Torrilhon (2003) and Struchtrup (2005) regularised the G13 

equations and obtained the following closures, in the non-dimensional form, as: 

 

 
2 2

33 12
3

Re 5

ij ij ij jk l
ijk i

m k k k l k

uT T p
m q

A p x x x x xMa Ma

   

 

   


   

    
       

       

 (14) 

2 2 2
1

2

1

28 2 5 2

5 Re 37

5
,

6

ji k k
ij i k i k i ij

R j j k j k

j k ij k i j ki k k R
kl

j k k l R

uq u uT T T
R q

A p x x x x xMa Ma Ma

q q u Ap

x x x x A


  

  

   


  


  

  

  



    
              

    
               

 (15) 

and 
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Struchtrup (2005) denoted this set of 13-moment equations with the above closure as the R13 equations. 

2.3.  Extending the hydrodynamic model - the R26 equations 

It was found (Gu et al. 2010; Young 2011; Gu & Emerson 2014) that the R13 equation set is not 

adequate enough to capture the Knudsen layer in Kramers’ problem and the regularised 26-moment 

equations (R26) are required to accurately reproduce the velocity defect found with kinetic data. 

However, both the R13 and R26 equations are able to capture many of the non-equilibrium phenomena 

observed using kinetic theory. These include effects such as the tangential heat flux in planar Couette 

flow and the bimodal temperature profile in planar force-driven Poiseuille flow (Taheri & Struchtrup 

2009; Taheri et al. 2009; Gu & Emerson 2007, 2009). Since equations (14) and (15) are algebraic 

approximations for ijkm  and ,ijR  they have no mechanism to produce a boundary layer for themselves 

near the wall. Alternatively, the governing equations of ijkm , ijR  and   derived from the Boltzmann 

equation can be used to provide information required in equations (12) and (13). They are (Gu & 

Emerson 2009): 
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Here, ijkl , ijk  and i  are the difference between the true value of the higher moments and their 

approximated value with 26Gf . In the R26 equations (Gu & Emerson 2009), they were obtained by a 

Chapman-Enskog expansion. For convenience, they can be expressed as gradient transport terms and 

high-order nonlinear terms, respectively, by 
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Here 
NL

ijkl , 
NL
ijk  and NL

i  are the remaining nonlinear high-order terms of ijkl , ijk  and i , 

respectively and are provided by Gu and Emerson (2009).  They are not implemented in the current 

version of the code. The values of the collision constants, ,A ,qA ,mA 1,RA 2,RA 1,A 2 ,A ,A A  and ,A

depend on the molecular collision model adopted and represent the relaxation time scale for each 

moment. They are given in Table 1 for the case of Maxwell molecules (Truesdell & Muncaster 1980; 

Struchtrup 2005), as employed in the present study. Although a dilute monatomic gas is employed, all 

the findings in the present study have relevance to realistic gases, such as air. 

A  qA  
mA  

1RA  2RA  1A  2A  A  A  A  

1.0 2/3 3/2 7/6 2/3 2/3 2/3 2.097 1.698 1.0 

 

TABLE 1.  Collision constants in the moment equations for Maxwell molecules 



 
Figure 1:  Orientation of a solid wall  

 

3. Wall boundary conditions 

To apply any of the foregoing models to flows in confined geometries, appropriate wall boundary 

conditions are required to determine a unique solution. Gu & Emerson (2009) obtained a set of wall 

boundary conditions for the R26 equations based on Maxwell’s kinetic wall boundary condition 

(Maxwell 1879) and a fifth-order approximation of the molecular distribution function in Hermite 

polynomials. In a frame where the coordinates are attached to the wall as shown in figure 1, with in  the 

normal vector out of the wall pointing towards the gas and i  the tangential vector of the wall, the slip 

velocity parallel to the wall, u , and temperature-jump conditions are: 
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and 
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Here ,nn ,n ,q ,nnm  ,nnnm ,nnR ,nn   and nnnn  are the tangential and normal components of ,ij ,iq

,ijkm ,ijR ,ijk i  and ijkl  relative to the wall, respectively. It should be noted that the normal velocity 

at the wall, 0,nu   since there is no gas flow through the wall. The accommodation coefficient, , 

represents the fraction of gas molecules which will be diffusively reflected with a Maxwellian 

distribution at the temperature of the wall, wT . The remaining fraction  1   of gas molecules will 

undergo specular reflection. Equations (21) and (22) are similar to the velocity-slip and temperature-

jump conditions for the NSF equations (Cercignani 1975; Gad-el-Hak 1999) with the additional 

underlined terms on the right hand side providing the higher-order moment contributions which are not 

available in the NSF model. However, these higher-order moment terms can be used to derive a second-

order slip boundary condition for the NSF equations (Taheri & Struchtrup 2010). The solution of the 

NSF equations in the present study is associated with the wall boundary conditions (21) and (22) 

without the underlined terms. The rest of the wall boundary conditions in non-dimensional form are: 
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in which,  û u RT   and w wT̂ T T .

4. Validations

Different types of geometry were used to test the implementation. The three-dimensional Talor-

Green Vortex (TGV) test case is used to test the implementation of the equations and the case of the 

two-dimensional lid-driven cavity flow is used to test the implementation of the equations and the wall 

boundary condition. 



4.1 Taylor-Green Vortex test case 

The Taylor-Green Vortex (TGV) is a well-known benchmark problem in fluid dynamics, often used 

to test the accuracy and robustness of numerical methods for turbulence, compressible flows, and 

rarefied gas dynamics. It represents a decaying vortex system, where the initial large-scale vortical 

structures break down into smaller scales due to nonlinear interactions, eventually leading to turbulence 

or dissipation. Its significance lies in its ability to assess the accuracy of different numerical schemes 

and physical models, particularly in capturing vortex dynamics, energy dissipation, and the transition 

to turbulence. For high-Mach and low-Reynolds-number cases, the TGV serves as a valuable test case 

for hypersonic and rarefied flow regimes, providing a means to validate moment models, kinetic 

methods, and continuum breakdown predictions by comparing results with Direct Simulation Monte 

Carlo (DSMC) or other reference solutions. 

The initial velocity distribution for the three-dimensional TGV is given as, 
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with the initial pressure field: 
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which are shown in figure 2. 

(a) (b) 

(c) 

Figure 2 Initial velocity and pressure field of the TGV flow. 



We first validate the development of the R13 model at a low Knudsen number (Kn=0.01), from 

which we expect a consistent result between NSF and R13. The TGV was solved within a 3-D box 

computational domain with size 32 and the domain was meshed with 1283 and 2563 grid points, 

respectively. The reference Reynolds number and Mach number are respectively Re=450 and Ma=0.3, 

leading to a Knudsen number Kn=0.001, which is a weak rarefied flow. The evolution of the kinetic 

energy and dissipation rate are compared with the data obtained with Nek5000 and DSMC (Gallis et al. 

2017) in figure 3(a). The evolution of kinetic energy from different methods collapsed, meaning the 

statistics are not sensitive to the closure of high-order moments. But with a detailed comparison of the 

dissipation rate in figure 3 (b), we note the result from the R13 agrees better with the result from DSMC 

slightly. By calculating the difference in dissipation rate in figure 3 (c), we can see the difference 

between the NSF and R13 model is between 0.6%, which is negligible. 
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Figure 3 Evolution of kinetic energy (a), dissipation rate (b), and the difference in dissipation rate of 

TGV flow at Kn=0.001. 

To highlight the importance of the moment equations, we further validate the development for TGV 

with a higher degree of rarefaction at Re = 50 and Ma=2.5 (Kn=0.083), in figure 4. The difference in 

the evolution of kinetic energy is still very small, meaning closure models have a negligible effect on 

the bulk effect of the shear tensor. However, the difference is obvious in the evolution of high-order 

statistics, e.g., the dissipation rate shown in figure 4 (b). The NSF predicted a higher level of dissipation 

rate than both the R13 and R26 models, especially around the peak of the dissipation rate. The results 

from the R13 and R26 models are close to each other, which means the usage of high-order closure for 

weak rarefied flow is not really necessary. 
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Figure 4 Evolution of kinetic energy (a), dissipation rate (b) of TGV flow at Kn=0.083. 

4.2 Lid-driven cavity flow 

Figure 5 Configuration of driven cavity flow problem. 

The validity of the implementation of the moment equations and their wall boundary conditions is 

examined on a 2D square lid-driven cavity flow, which is a standard benchmark problem to validate 

numerical accuracy. The length of the cavity edges is L  and the lid moves at a velocity, wu ,   as 

shown in figure 5. The origin of the coordinates sits at the left bottom corner of the cavity. The 

reference temperature and viscosity are 273KoT   and 621 25 10 Pa so .    , respectively.

 The rarefied gas flow of Kn=0.1 and 0.5 in a square-driven cavity with a length of  L  is calculated 

computed with the moment equations in comparison with the DSMC data (John et al 2010). The wall 

velocity is set to be 50 m/s so that Mach number is 0.1625Ma  . The relationship between Re, ,Kn

and Ma  is readily obtained as 

2
Ma Re Kn.


 (34) 

The corresponding Reynolds number is Re 2.629  and  0.5258, respectively. 
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Figure 6 Velocity profiles along the lines through the cavity centre at 0.1Kn  . 

Figure 3 shows the computed u and v -velocity components from the three macroscopic equation sets 

along the central vertical line and horizontal line, respectively,  crossing the cavity centre at 0.1,Kn   

in comparison with the DSMC data (John et al 2010).  At the upper boundary of the slip regime of 

0.1,Kn  the agreements between the macroscopic models and the DSMC data are good in general,

apart from the slip velocity along the top moving lid wall. The NSF and R13 equations overpredict the 

slip velocity while the R26 equations agree with DSMC data well. 

Figure 7 Velocity profiles along the lines through the cavity centre at 0.5Kn  . 

For the case of 0.5Kn  into the transition regime, the NSF equations overpredict the slip velocity on 

the top moving lid wall significantly in comparison with the DSMC data (John et al 2010),  as indicated 

in figure 7(a). The v-velocity along the horizontal centre line from the NSF equations is significantly 

lower than the DSMC, as the result of the overpredicted slip velocity along the walls as shown in figure 

7(b).  On the other hand, the R26 moment equations follow the DSMC data reasonably well in both u 

and v in the x and y directions, respectively, apart from overpredicting the slip velocity slightly in 

comparison with the DSMC data. The results of the R13 equations are between the NSF and R26 

equations, as expected.    
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5. Computational performance

As the number of the equations increases from the NSF equation set to the R26 moment equation 

set, the total CPU time increases accordingly. However, the parallel performance, such as the speedup, 

remains the same for the different levels of the equation sets. 

6. Conclusions

The capability of the open-source CFD code, ASTR, has been extended to simulate non-

equilibrium gas flow by adding several modules based on the Method of Moments. The Cartesian 

components of the higher rank moments are solved as primary variables.  All of the added modules 

have been tested (i) Taylor Green Voxtex (TGV); (ii) Lid-driven cavity flow. The validation cases have 

been compared to available data to ensure the accuracy of the implementation.  
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