
Technical Report for eCSE03-5 “Unleashing the Potential for Superior
Parallel Performance of the ONETEP Linear-Scaling Density Functional
Theory Package on ARCHER2”
Background

The ONETEP Linear-Scaling Density Functional Theory (LSDFT) package [1,2] is a fully-fea-
tured ab initio electronic structure package suited to large-scale atomistic simulations of
systems such as nanomaterials, crystalline interfaces, and biological materials. It has been
developed over the last 15 years by a group of academics, the ONETEP Developers Group
(ODG), based at leading UK universities including Warwick, Imperial, Cambridge and South-
ampton. It has a strong user community both in academia and industry, being made availa-
ble both via a free academic license to UK academics, a low-cost license to other academics,
and via DS Biovia’s Materials Studio package. The parallel scaling in the early days of
ARCHER2, obtained by initial measurements utilising hybrid MPI/OpenMP parallelism,
demonstrated that while the code exhibited what constituted respectable scaling on
ARCHER, it was vital parallel algorithms were redeveloped to run efficiently on ARCHER2,
and to take advantage of the large capacity of individual nodes with 128 cores.

Figure 1 - Schematic of the density extraction and deposition routines which are used in
converting whole-cell data to thread-local FFTbox grid data.

This proposal aimed to provide a dramatic upgrade to the parallel scaling of the ONETEP
Theory code, when run on state-of-the-art parallel computing environments such as
ARCHER2. Large nodes make novel demands of the parallel algorithms, exposing algorithmic
issues that were not previously been problematic. Work done in the past, particularly
around the time of first use on the ARCHER supercomputer [3,4], resulted in parallel scaling
ONETEP that is, at first, reasonably good with total core count: a nearly-perfect scaling re-
gime exists for a large (1000+ atom) job on up to around 1000 cores. However, beyond that,
parallel efficiency began to drop rapidly, and we aimed to address this via work packages on

Clair
Stamp

whole-cell grid (see Figure 1) and sparse matrix routines respectively. A further work pack-
age involved code sustainability and benchmarking activities including documenting best
practice when running at very large scale with hybrid MPI/OpenMP parallelism.

As this technical report describes, while all the objectives relating to code implementation
and dissemination were achieved, the parallel performance gains of the implemented ap-
proaches were not as high as might have been hoped, because of technical limitations of the
One-Sided communications routines within the available MPI libraries on ARCHER2 and
other available systems.

Development work was undertaken within a fork of the ONETEP code by Chris Brady and
Heather Ratcliff. Three sections of ONETEP have had their communication approaches
supplemented by MPI RDMA calls.

Density Deposition and Extraction

In this part of ONETEP quantities are defined on hexahedral mesh subdomains of the
hexahedral mesh global domain. They are then either deposited (value is accumulated from
the subdomains onto the global domain) or extracted (value on the global domain is copied
onto the subdomains). The global domain is decomposed over all of the MPI ranks that
ONETEP is running on but each subdomain is held entirely on a single rank. The subdomains
that each rank holds are not related to the section of the global domain that the rank holds.
This is show diagrammatically in Figure 2.

Figure 2 - 2D analogue of the global
domains and subdomains in ONETEP.
Colours indicate the rank that owns a
part of the global domain or a given
subdomain

In general remote accumulation to
many destinations is needed for
deposition and remote acquisition of
data from multiple sources is needed
for extraction. In deposition there is the
further complication that each
subdomain is calculated before
deposition in a separate thread and the
MPI communication is then run inside
an OpenMP critical section In the
existing approach to deposition in
ONETEP a subdomain is prepared on
each rank and then MPI_Alltoall is

called so that the overlap of each selected subdomain with each other rank is known. Each
rank then exchanges the relevant overlapping information with the other ranks using sends
and receives, except in the case of subdomains that are located on the local part of the
domain. The final accumulation of the result is by local addition. Extraction is the same basic
algorithm but the final data is simply stored to the subdomain. Note that in this algorithm all
of the information needed to calculate the overlap of the subdomain and each other rank’s
part of the domain is held on the processor that holds the subdomain. Since ONETEP has to
put all MPI calls into OpenMP critical sections the requirement for synchronisation between

all MPI ranks causes thread level synchronisation across the entire job which limits scaling
when using many threads and many MPI ranks. Using MPI RDMA calls eliminates this
effective synchronisation between threads since each MPI rank is now able to act entirely
independently of the others until all subdomains have been either deposited from or
extracted to. The simplest approach to implementing MPI RMDA for both deposition and
extraction creates an MPI window over the entire domain and then using MPI_Accumulate
(for deposition) or MPI_Get (for extraction) to actually transfer the data. In the case of
deposition there is a requirement that the source buffer must be available for reuse after
the call to MPI_Accumulate. This means that either the access EPOCH must be started and
ended immediately before and after the call to MPI_Accumulate or it must be valid to call
MPI_Win_flush_local on the window after the call to MPI_Accumulate.

Both of these imply very strongly that passive target synchronisation must be used. While
there are fewer restrictions on extraction the current implementation shares code between
extraction and deposition and retaining this approach was simpler. Two approaches to
implementing MPI RDMA were tested. In the first approach MPI_Win_lock_all was called
immediately after the window was created and MPI_Win_unlock_all was called just before
the window was freed. Immediately after the call to MPI_Accumulate, MPI_Win_flush_local
was called to allow reuse of the source buffer. In the second approach MPI_Win_lock and
MPI_Win_unlock are called immediately before and after the call to MPI_Accumulate or
MPI_Get specifically for the target rank. After testing the first approach was rejected since it
caused a substantial increase in the memory required which seemed to be due to the MPI
layer choosing to deal with the call to MPI_Win_flush_local by copying the source buffer to
MPI_Accumulate to a temporary buffer.

The second approach works as expected and produced initial evidence of an increase in
scaling efficiency for small systems – see Figure 3. However, absolute times for the RDMA
approach were slower than for the conventional approach. It can be hoped this may
improve with future MPI implementations and there is still scope for improvement within
the current approach.

Figure 3 - Scaling of
tests of the runtime
associated with
density
extract/deposit
operations

Sharing basis functions

The second part of ONETEP that was modified to use MPI RDMA was the section that deals
with sharing basis functions across the processors. This section of ONETEP uses an
asynchronous request response system overlapping communication with compute. The
processor that wants a given basis function sends a request for that basis function
asynchronously. The processor that has that basis function receives the request
asynchronously and then asynchronously sends the response to the requesting processor
which in turn asynchronously receives the returned basis function. The overlap of compute
and communication is already written so this maps naturally onto MPI RDMA. Internal
changes to the layout of memory were made so that all of the basis functions on a given
MPI rank were stored contiguously but otherwise the changes were simple. An MPI window
is created when the calculation involving the basis functions starts and also locked over all
ranks at the same time and information about how the various basis functions are laid out
across ranks is exchanged. The phases of data exchange in the existing ONETEP code are
then followed but simplified. Where in the original code a request is made to a remote
processor for a given basis function this is replaced with a call to MPI_Get, the intermediate
step of responding to remote requests disappears since this is now handled by the MPI
RDMA implementation and the step of responding to the asynchronous receive of the
response becomes an MPI_Win_flush_local. Performance tests on this code as shown in
Figure 4 suggests that it performs similarly but slightly better than the existing two sided
implementation, but there is scope for more performance improvements as the MPI RDMA
system matures.

Figure 4 - Scaling of runtime associated with basis function comms operations on 16 to 128
MPI ranks. Performance of both approaches is very similar.

Final tests on total runtime

For acceptance testing of the changes made during this project, a set of realistic timings
tests were performed on full-scale runs on a very large model of an Amyloid fibril,
comprising 13696 atoms. These are shown in Figure 5 and demonstrate that the total time

in the revamped code achieved is comparable to the original code, without demonstrating
significant speedup when applied at large scale. Scaling benefits of the new algorithms do
not seem to transfer over to large-scale execution of the new code.

Figure 5 - Final runtime before and after implementation of RDMA operations under two
combinations of OpenMP and MPI parallelism (16 threads x 8 MPI tasks and 8 threads x 16
MPI tasks), on 8-32 nodes of ARCHER2.

Conclusions
The work in this project successfully implemented “one-sided” RDMA operations with the
goal of accelerating the scaling with MPI process count of some of the more challenging MPI
communications routines in the ONETEP code. All the technical goals relating to
implementation of the approach were achieved, though the performance of the resulting
routines was no better than the original code. All of the objectives relating to making the
code more useful to users through improved documentation, and ensuring automated
recurrent testing were achieved, and the project fed well into further developments as part
of the Software for Research Communities EPSRC project that took parallel scaling
development in a different direction including developments aimed at porting to GPUs. This
subsequent work has made great progress on optimising the same basic operations and

improving overall speed to the degree envisaged this eCSE project, but by a different
approach (see, for example fig 21 at ref [5]).
This work was funded under the embedded CSE programme of the ARCHER2 UK National
Supercomputing Service (http://www.archer2.ac.uk).

Bibliography

[1] Introducing ONETEP: Linear-scaling density functional simulations on parallel computers, C.-K.
Skylaris, P. D. Haynes, A. A. Mostofi and M. C. Payne, J. Chem. Phys. 122, 084119 (2005).
[2] The ONETEP linear-scaling density functional theory program, J. C. A. Prentice, …, N. D. M. Hine,
…, et al (36 authors), J. Chem. Phys. 152, 174111 (2020)
[3] Linear-scaling density-functional theory with tens of thousands of atoms: Expanding the scope
and scale of calculations with ONETEP, N. D. M. Hine, P. D. Haynes, A. A. Mostofi, C.-K. Skylaris and
M. C. Payne, Comput. Phys. Commun. 180, 1041 (2009)
[4] Hybrid MPI-OpenMP parallelism in the ONETEP linear-scaling electronic structure code:
Application to the delamination of cellulose nano-fibrils, K. A. Wilkinson, N. D. M. Hine, and C.-K.
Skylaris, J. Chem. Theory Comput. 10, 4782(2014).
[5] https://docs.onetep.org/developer_area.html#fast-density-calculation-for-developers

Authors: Dr Nicholas D M Hine, Dr Christopher S Brady, Dr Heather Ratcliffe (University of Warwick)

