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Abstract 
Second-harmonic generation is perhaps the most ubiquitous nonlinear optical process; it 
consists of the generation of waves with frequency twice as large as that of an excitation 
optical wave (also called linear or pump wave) that interacts with a nonlinear optical medium. 
As such, this nonlinear optical process is at the heart of many engineering applications, such 
as nonlinear plasmonic nanoantennas, nonlinear microscopy and imaging, photonic crystals 
and cavities. Therefore, accurate and fast characterization of second-harmonic (SH) process 
is vital for the design phase of an efficient development of many photonic devices. The main 
aim of this eCSE project was to facilitate numerical and computational investigations of 
nonlinear SH processes in clusters of nanoparticles with an emphasize on parallel and scalable 
implementations geared towards execution on distributed memory supercomputers.  
 
1. Project description  
Before the start of this eCSE project, OPTIMET was a parallel and scalable C++ code based on 
the multiple scattering matrix (MSM) method able to numerically analyse electromagnetic 
wave scattering from large clusters of spherical nanoparticles made of arbitrary optical 
materials. OPTIMET could be used in a multitude of scenarios of interest in optical technology 
such as, for example, analysis of metasurfaces used in the design of flat lenses, nonlinear 
plasmonic nanoantennas, nonlinear microscopy and imaging, and photonic crystals and 
cavities [1, 2]. In its previous version, OPTIMET was able to only handle linear optical 
problems, in which the incident field impinging on the cluster of nanospheres, as well as the 
scattered field resulting from the interaction of the incident field with the cluster, oscillate 
with the same frequency. 

In this eCSE project, we significantly increase OPTIMET’s range of functionalities and 
application domains by extending it along three main directions: 

• Incorporated a nonlinear module able to analyse second-harmonic (SH) optical 
processes in nanoparticle systems. The nonlinear module is seamlessly integrated 
with the linear code by exploiting the pre-existing software architecture, when 
possible, as well as already available direct and iterative linear system solvers. It was 
parallelized using MPI standard in a similar fashion to the linear module, so that the 
numerical analyisis of both optical phenomena, linear and SH, can be performed 
together on many-node computing architectures. 

• In the previous version, OPTIMET was able to handle only spherical particles, which 
represented a serious limitation because in the real world nanoparticles often have 



 

non-trivial shape. We have introduced the possibility for the analysis of particles of 
virtually arbitrary shape, both in the linear and nonlinear cases.  

• Implemented an adaptive cross approximation (ACA) procedure on top of the linear 
and nonlinear computational modules. Using this compression strategy, low rank 
representations of submatrices describing nanoparticle optical coupling were found, 
both at the fundamental frequency (FF) and SH. In this way, we drastically reduced 
the memory consumption and sped up the matrix-vector multiplication inherent to 
iterative solvers. 

 
2. Features developed during the eCSE project 
In this section we describe in more detail the work developed during this eCSE project. The 
summary is given in the bullet points of the previous section. 

a) Analysis of second-harmonic optical process in nanoparticle clusters (spherical case) 
and the adaptive cross approximation acceleration technique 

We are interested in the analysis of SH scattering from spherical particles made of 
centrosymmetric, nonmagnetic and isotropic optical material, with electrical properties 
described with dispersive complex permittivity function, 𝜖(𝜔). The system is excited by a 
time-harmonic electromagnetic plane wave oscillating at FF, 𝜔. The nonlinear SH optical 
waves oscillating at angular frequency Ω = 2𝜔 originates from two types of nonlinear 
polarization sources associated to each scatterer. The centrosymmetric crystal lattice of the 
material forbids the formation of local dipole polarization source inside the nanoparticles; 
however, due to the symmetry breaking at the vicinity of the surface of the particle, dipole 
surface nonlinear polarization density is induced. Although this interfacial origin of SH is 
usually enough to accurately describe second-harmonic generation (SHG) from metallic 
particles, when a more accurate analysis of purely dielectric targets is required, one must add 
a nonlocal nonlinear polarization source induced inside the particle, whose origin are the 
electric quadrupoles and magnetic dipoles induced in the nonlinear medium. 

In the context of the MSM method applied to the nonlinear SH case, the electromagnetic 
fields in the volume external (𝑉!) (usually vacuum) and internal (𝑉") to the nth  particle in the 
cluster of N particles in total, are expanded in series of vector spherical harmonics (VSHs) 
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with 𝑘! 	and	𝑘( representing wave numbers associated to the exterior and the interior regions 
of the nth sphere calculated at the SH frequency, respectively. The corresponding spherical 
wave expansions of the SH magnetic fields are derived directly from Maxwell-Faraday law 
using the curl relation. A key step in the calculation of the unknown expansion coefficients 
(𝑏#(, 𝑎#() and (𝑐#(, 𝑑#() associated to the nth particle is the expansion of the nonlinear SH 
boundary conditions [3, 4], related to the nth particle, in a series of VSHs. In this way, we can 
derive a T-matrix [5] relating the external field expansion coefficients to the coefficients used 
in the expansion of the boundary conditions at the SH. For a single particle case, this can be 
formally expressed as: 

[𝒇(] = 𝑻([𝒈(],                                                                                                                                     (3)    



 

where the vectors 𝒇( and 𝒈( contain the VSH expansion coefficients of the SH external field 
and the nonlinear boundary conditions, respectively. For the case of a spherical particle,	𝑻( 
is a diagonal matrix with entries that can be computed analytically. The extension of Eq. (3) 
to multiparticle systems is achieved by employing translation-addition matrices [6], which are 
used for the characterization of multiple scattering effects among the particles. The total SH 
electric field exciting the nth sphere is equal to the sum of the fields radiated by all the other 
spheres, and is given by: 
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This field can be expanded in the local coordinates associated to the nth sphere employing the 
translation-addition matrices 𝜶(,., evaluated at the SH frequency as: 
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The total SH field incident onto the nth sphere, 𝑬(,!-,  is expanded into a series of VSHs, with 
the corresponding expansion coefficients forming the vector 𝒆(. Then Eq. (5) can be written 
solely in terms of SH field expansion coefficients as follows: 
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Multiplying Eq. (6) with the T-matrices of scatterers (𝑻%, … , 𝑻*), we are left with the system 
comprising the external field expansion coefficients only, expressed in matrix form as: 
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or in a more compact form: 

[𝑺1][𝑭1] = [𝑮𝜴].                                                                                                                                            (8)       

The assembly of the multiparticle system scattering matrix 𝑺1, together with the excitation 
vector 𝑮𝜴, resulting from the discretization of the nonlinear boundary conditions, and the 
solution of the linear system given in Eq. (8) represent the main computational tasks 
performed by the nonlinear module developed in this project. These tasks are initially 
programmed as a serial C++ code, and afterwards parallelized using MPI for optimal execution 
on distributed memory HPC platforms. Physical quantities computed at the postprocessing 
stage, such as field profiles (Fig. 1) and scattering and absorption spectra (Fig. 2) are easily 
computed from the solution of linear system (8).  

Because of the complexity of the MSM method and page limitations imposed by this Report, 
we had no choice but to leave many details regarding the computational algorithm out. Those 
interested in the nonlinear counterpart of the MSM method can find out more details about 
it in Ref. [7], which we also attached to this Report as Annex I. 

To speed up the execution of the code, we have included the possibility for the user to 
compress the system scattering matrices 𝑺3 and 𝑺1, arising from the MSM analysis at the FF 
and SH, respectively, using the ACA algorithm [8]. Some of the off-diagonal submatrices in 𝑺3 
and 𝑺1 describing the electromagnetic coupling between separated particles are rank 



 

deficient and thus can be approximated as the product of two matrices with lower rank. This 
low-rank approximation results in the compression of the scattering matrices 𝑺3 and 𝑺1 
hence saving memory and accelerating the matrix-vector product inherent to GMRES iterative 
solvers. The adaptive cross approximation procedure is implemented in a modular manner 
on top of the linear as well as nonlinear OPTIMET code. 

The ACA procedure becomes particularly useful when dealing with clusters of a large number 
of particle (>200 scatterers) and large number of VSHs per particle (>10). To corroborate this 
claim, we considered a cubic cluster of silicon nanospheres embedded in vacuum and located 
in first octant of the Cartesian coordinate system, aligned with the x -, y - and z-axes. The cubic 
array contains 7x7x7 = 343 spheres with same radii 𝑟" = 50	nm, i = 1,… ,343 which are 
equally spaced with the centre-to-centre distance d	=	190	nm. Each sphere is anlysed with 
160 harmonics in the FF and SH regimes, which amounts to scattering matrices of dimension 
equal to 𝑑𝑖𝑚(𝑺3) = 𝑑𝑖𝑚(𝑺1) = 54,880. This is a computational problem of moderate size 
with complex system matrices. In terms of computer memory, each matrix element occupies 
16 bytes (real and imaginary parts of the type double), which brings us to the total memory 
allocation of 48.19 GB per scattering matrix. This is a substantial memory consumption which 
we aim to reduce by using the ACA algorithm.    

 
Fig. 1. Electric field amplitude at the FF (left) and SH (right), calculated for a cubic cluster (343 silicon 

nanospheres) at the incident wavelength λinc = 800 nm. The fields are determined in the xy-plane at z=570 nm. 
In Fig. 2 we plot the scattering and absorption cross sections at FF (top panels) and SH (bottom 
panels) computed with MSM and ACA compression (dashed lines with asterisk) and compare 
them to the results obtained without ACA compression (full lines). Very good agreement is 
observed both at the FF and SH. The scattering matrices compressed with ACA occupy only 
about 16% of the memory used by the uncompressed ones, thus making this problem 
amenable even for some high-end workstations.  

 
Fig. 2. Scattering and absorption cross sections at FF (upper panels) and SH (bottom panels) for a cubic lattice 

of nanospheres 



 

The relative reduction in the memory requirements becomes more significant with the 
increase of the number of particles in the system under analysis as more matrix blocks, 
describing the coupling between distant particles, become rank deficient. This favourable 
property of ACA brought us to a level at which we can analyze clusters containing an order of 
magnitude more particles as compared to the situation before this eCSE project (now we can 
handle thousands of particles instead of hundreds).   

b) The extension of the FF and SH analysis to nonspherical particles 
The extension of the MSM numerical method to the case of nonspherical particles is by no 
means trivial. The main difference between the MSM-analysis of spherical and nonspherical 
(arbitrarily shaped) particles resides in the construction of the T-matrix characterising each 
scatterer. In the case of a sphere, this matrix is diagonal with the elements given by the well-
known Mie coefficients. On the other hand, for the case of a particle with arbitrary shape, the 
T-matrix is generally full, with entries equal to integrals evaluated over the surface of the 
particle involving products of VSHs. The theory behind the MSM analysis of nonspherical 
particles at FF is well known [9], while the analogous theory valid at the SH is new, to the best 
of our knowledge, and has been developed as part of this eCSE project. This work is too 
elaborate to fit this section, so that the interested reader is referred to Annex I, where the 
theory and computational results are described in detail. A detailed description of VSHs used 
in the linear and nonlinear MSM analysis can also be found in Annex I. 

Here we present just one example of how OPTIMET performs, namely we compare the linear 
and nonlinear scattering cross-section spectra obtained with MSM method, described in 
Annex I, with the cross-section spectra calculated by a commercial solver based on FEM. We 
analyze two identical gold prolate spheroids with equatorial and polar radii equal to 𝑎 =
50	nm and 𝑐 = 70	nm, centred at (0, 0, 0) and (0, 0, 200)	nm. This configuration is 
interesting as it may find its application to the design of plasmonic nanoantennas or sensing 
devices since strong near-fields can be induced in the gap between the spheroids, allowing 
the formation of so-called hot spots. The scattering cross-sections are presented in Fig 3. 

 
Fig. 3. Scattering cross sections at FF (upper panel) and SH (bottom panel) for two prolate spheroids made of 

gold. 
3. Scalings and performance of the code on ARCHER2 
In this section, we report on the performance of our parallel implementations on ARCHER2 
computing cluster of the OPTIMET code. 

The assembly of the scattering matrix 𝑺1 at SH is parallelized in the same fashion as the 
assembly of 𝑺3 corresponding to the FF case, so that the interface to the parallel direct and 



 

iterative solvers, already efficiently implemented and tested for the FF case, can be reused. 
Namely, each MPI process holds all the information about the geometry and materials 
parameters of the particles in the cluster, and computes one or several columns of the 
scattering matrix, representing interactions of each particle with all the others. The number 
of the scattering matrix columns each process is allocated depends on the number of particles 
in the cluster and number of allocated MPI processes. Load-balanced distribution is ensured 
across all of the processes. 

Different from the linear module, whereby the computation of the excitation vector is very 
cheap, the evaluation of the nonlinear source vector 𝑮𝜴 is computationally intensive as it 
requires the calculation of special Clebsch-Gordan coefficients over multiply-nested sums. 
These calculations are performed in parallel as well in a load-balanced manner over vector 
spherical harmonics. 

For our performance benchmark we chose an assembly of nanospheres arranged in a cubic 
lattice. We assumed that the spheres are made of silicon and are located in the first octant of 
the Cartesian coordinate system, aligned with the x-, y- and z-axes. The lattice contained 
8×8×8 = 512 identical nanospheres with radii 	𝑟( = 300	nm, 𝑛 = 1,… , 512, which were 
equally spaced with center-to-center distance,	𝑑 = 700	nm, thus forming a cubic array with 
the side length equal to 4.9	µm. The cluster is illuminated with a time-harmonic plane wave 
characterized by wavelength, λinc	=	500	nm, propagating along a direction defined by the 
angles θinc	 =	 π/4 and φinc	 =	 π/2 and polarized along the θ direction. Each sphere is 
discretized with 240 spherical harmonics resulting in a total of 122,880 basis functions per FF 
and SH computations. This discretization level translates to full-system scattering matrices 𝑺3 
and 𝑺1 occupying about 241.6 GB of memory each. 

In the following figures we plot the performance of the system scattering matrix assembly 
and direct as well as iterative GMRES solutions with and without ACA compression, for both 
the FF and SH cases. We calculated the speedup as compared to the computation time 
performed on 8 MPI processes. This number of MPI processes was the minimum number we 
could use on our benchmark calculations before memory issues or computation time 
restrictions made the calculations impractical. Therefore, the speedup factor 𝜂, introduced in 
the Success Metrics of Objective 3, must be rescaled considering this issue i.e., considering 
the calculations on 8 MPI processes as “serial”.  

 
Fig. 4. Speedup of the system scattering matrix assembly at FF and SH (top panel) as the number of processes is 

increased from 8 to 512, with respect to the computations performed on 8 MPI processes. The same speedup 
computations for the direct ScaLAPACK linear system solution (bottom panel).  



 

In Fig. 4(a) we show the speedup of the computation regarding the system matrix assembly 
(same for the FF and SH) as we increase the number of MPI processes from 8 to 512 and with 
respect to the computations performed on 8 processes. It can be seen that the speedup is 
very close to the ideal case, especially for a smaller number of MPI processes. Similarly, in Fig. 
4(b) we show the speedup of the direct ScaLAPACK solution of the linear systems at the FF 
and SH when the number of processes is increased from 8 to 512 with respect to the 
computations obtained on 8 processes. The linear system solution speedups for FF and SH 
cases are very similar, since the direct solver is immune to the matrix condition numbers. This 
plot shows that a very close to ideal speedup factor was achieved in this case, too. 
Accordingly, the speedup factor 𝜂	takes the value between 1 and 0.9 as the number of MPI 
processes is increased, both in the scattering matrix assembly phase and when the solution 
of the linear systems is computed. The decrease in this factor is explained by the increase of 
the communication time between the processes as their number increases. 

 
Fig. 5. Speedup of the matrix-vector product involving the compressed ACA system for the FF or SH frequencies, 

and the uncompressed system, as the number of processes is increased from 8 to 512, with respect to the 
computations performed on 8 MPI processes (top panel). Speedup of the matrix-vector operations in GMRES of 
compressed vs uncompressed systems when the number of processes increases from 8 to 512 (bottom panel). 

In Fig. 5(a) we present the speedup of the matrix-vector operation inherent to the GMRES 
iterative solver when the scattering matrix of the system is uncompressed and compressed 
with the ACA procedure. For this purpose, we first had to update the GMRES solver to be able 
to operate on such compressed systems (we call GMRES-ACA this version of the GMRES). By 
a simple inspection of the plots in Fig. 5(a) we see that our parallel compressed matrix-vector 
product scales similarly as the uncompressed one, thus validating our parallel compressed 
iterative scheme. Moreover, in Fig. 5(b) we test the speed of the ACA-compressed system 
matrix-vector operation. Due to the low rank approximation of certain submatrices, we 
gained on the computational performance as compared to that in the case of the 
uncompressed system matrix-vector product for all number of MPI processes considered. 
This favourable performance of the ACA procedure is particularly significant when the 
condition number of the system matrix is not good, and there are no suitable preconditioners, 
which is often the case in the SH scattering analysis of clusters containing a large number of 
particles. In particular, the data in Fig. 5(b) shows that a speedup factor ranging from 2.2 to 3 
can be achieved when the ACA compression technique has been employed.  

 
This work was funded under the embedded CSE programme of the ARCHER2 UK National 
Supercomputing Service (http://www.archer2.ac.uk).  
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