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Abstract 
The United Kingdom Chemistry and Aerosols model (UKCA) [1] is a component of the Met 
Office Unified Model (UM) [2]. In this project we have developed a stand-alone flight-track 
simulator code that can be embedded into the UM-UKCA workflow. This code outputs high 
resolution data on a number of pre-defined flight tracks by interpolating modelled 
dynamical, chemical, and aerosol fields from the model grid to the flight times and 
locations. This data is then written to a CF-compliant NetCDF file that can be efficiently 
stored, due to its small size, and more easily compared to flight observations. This method 
achieves a large reduction in the size of model data being produced for comparison with 
flight data. By interpolating global, hourly files onto flight-track locations, we reduce data 
output for a typical climate resolution run, from ~3 Gb per model variable per month to ~15 
Mb per model variable per month (a 200 times reduction in data). 
   
 
1. Introduction 
The UM-UKCA model allows users to run interactive chemistry and aerosol schemes with 
the UM. As a whole-atmosphere composition-climate model, UM-UKCA simulates large 
numbers of chemical and aerosol tracers using its stratosphere-troposphere (StratTrop) 
chemistry [3] and GLOMAP-mode aerosol [4] schemes. Other chemistry schemes under 
development include CRI-Strat [5,6]. As well as chemical and aerosol tracers, model 
variables include numerous dynamical fields and further diagnostics. 
 
In order to validate the chemistry schemes used in UM-UKCA, a wide variety of 
observational datasets are used, such as ozone sondes, satellite observations, surface 
stations, and observations from research aircrafts. Evaluating model configurations against 
flight data is a useful tool to understand model biases and to help improve model 
performance; moreover, model simulations can be used effectively to help interpret data 
from flight campaigns. However, comparison between climate or weather forecast models 
and aircraft data is not straightforward. Data from research aircrafts is defined on the 
aeroplane flight track; this means that each point in time for the observations corresponds 
to a fixed point in 3D space (associated to the longitude, latitude and pressure of the 
research aircraft at that time), with observations taken at a high temporal frequency. 
However, each point in time for modelled data corresponds to a large number of longitudes, 
latitudes and pressure, defined by the model 3D grid. Model data is also typically only 
available every 20 minutes or every hour due to the dynamical and chemical timesteps 
used. 
 



To be able to compare to flight-track data correctly, users in the past have output hourly (or 
higher frequency) fields over a large part of the atmospheric domain (typically limiting only 
in height). As well as using a large amount of storage space, handling such large files is very 
time-intensive: extracting the hourly data from a tape archive typically requires ~3 hours per 
model year, followed by several hours to read and interpolate these fields down to the 
single-point of the flight track. This past method led to orders of magnitude more data being 
generated, stored, and processed than is actually required, and significant amounts of time 
and computer resources spent to extract, read and interpolate model data onto flight 
tracks. 
 
A previous attempt at producing model data on flight track code in a more efficient way was 
made several years ago, by embedding a flight_track routine (using Fortran programming 
language) within the UKCA source code [7]. However, this approach leads to a number of 
problems:  

1) The additional code will add a computational burden to the running of the UM-UKCA 
main code, potentially slowing down the model integrations. 

2) Model diagnostic related to some UM dynamical fields are not easily available within 
the UKCA code. 

3) Embedding code within the UM-UKCA model trunk requires strict coding practices 
and model tests have to be designed and run to ensure the code runs properly and 
remains effective as the structure of the UM-UKCA code evolves over time. 

4) The format of output files is restricted to the UM internal file formats (e.g. UM 
fieldsfile) which is not an easy-to-handle and internationally recognised format. 

5) Due to strict licensing of the UM-UKCA code, any code developed which is 
embedded within UM-UKCA cannot be easily made available. 

As a result of the above points, the flight_track routine used in Telford et al. [7] was never 
ported to further versions of UM-UKCA. 
 
2. Method Overview 
This section describes the method developed to allow model users to easily produce model 
data on defined flight tracks as the model runs.  
 
Instead of outputting and archiving large, hourly, 3D, gridded model fields, of which only a 
small fraction is used, the code we have developed produces and archives much smaller 
data files on flight tracks coordinates, therefore greatly reducing data storage requirements 
and the time and resources necessary to process the data.  
 
A flight track code (UM_to_flightrack.py) was developed using the python programming 
language. This python code makes use of the Community Intercomparison Suite (CIS) 
python library [8] interfaced to the cf-python library [9] for reading-in UM-format data files. 
This new code is embedded into the UM-UKCA run-time workflow, by creating a new 
Rose/Cylc ‘app’, flight_track_sim, which is inserted after the model timestep is completed 
and before the postprocessing step. Rose[10] is the graphical user interface (GUI) for the 
UM, and the Cylc[11] workflow engine is used to schedule the UM and other necessary tasks 
on the HPC batch system. A schematic of the UM workflow with the flight track simulator 
step (flight_track_sim) is shown in Fig 1. 



Since this code is inserted into the UM-UKCA run-time workflow, it does not have any of the 
problems listed in the previous section, which are typically associated with code developed 
within the main UM-UKCA source code (e.g. similar to Telford et al. [7]). This method also 
has the following advantages: 

1) Model data on the flight track is output using the internationally recognised NetCDF, 
CF-compliant format, making handling and analysis quicker and easier for users. 

2) As well as being inserted into the UM-UKCA workflow, the code has optional logical 
input that allow it to run as a postprocessing tool, for example to analyse data from 
older simulations or to test the impact of different interpolation methods. 

3) The code can be easily customised to process any model data (not just UM-UKCA), 
therefore making it useful to the wider atmospheric science community. 

 

a) 

 



b) 

 
 
Figure 1. a) shows a schematic of the UM workflow indicating where the flight track simulator step fits: 
flight_track_sim reads input variables and logicals provided by the user through the Rose GUI and runs the 
python script UM_to_flightrack.py; b) shows the UM run-time control GUI for an example run which includes 
the flight_track_sim step: these include running the main UM-UKCA code (atmos_main), interpolating model 
output on predefined flight tracks (flight_track_sim), data handling and archiving (postproc) and deleting files 
from the user workspace (housekeeping). Grey colours indicate that a task has been completed, green shows a 
task that is running and blue shows tasks that are awaiting to run.     
 
3. Changes to the UM Rose suite 
This section describes in more details how the flight-track simulator code is embedded into 
the UM-UKCA workflow. 
 
We created a new Rose/Cylc app, ‘flight_track_sim’, which reads input variables and logicals 
provided by the user through the Rose suite GUI. File changes required to include 
flight_track_sim into a UM Rose suite are described below: 

1) Create a new directory within the UM runid directory, 
roses/$runid/app/flight_track_sim (where $runid is the UM job identifier, eg u-
co561). This directory contains a rose-app.conf file and a bin subdirectory containing 
the python script UM_to_flightrack.py. 

2) rose-app.conf defines input variables and launches UM_to_flightrack.py. An example 
of rose-app.conf file is shown below: 

 [command] 
default=python3 
${UM_data_dir}/../../../app/flight_track_sim/bin/UM_to_flightrack.py --outdir 
= ${Additional_output_dir} --inputdir = ${UM_data_dir}  --trackdir = 
${Flight_dir} –ppstream = ${hourly_data_ppstream}     --jobid = ${jobid} --
date = $YEAR_MONTH batch --archive_hourly = ${archive_hourly_ppstream} 

 
 [env] 
 Additional_output_dir=/work/n02/n02/mrr32/Flight_output/ 



 Flight_dir=/work/n02/n02/mrr32/AeroCom_flight_track_source/ 
 UM_data_dir=$DATAM/ 
 archive_hourly_ppstream=True 
 hourly_data_ppstream=l 
 jobid=$RUNID 

 

3) The UM_to_flightrack.py file can be downloaded from GitHub 
(https://github.com/MariaRusso/CF-CIS-Iris_python_tools) and copied to 
roses/$runid/app/flight_track_sim/bin/. 

4) Include a flight_track_resource ‘block’ in roses/$runid/site/archer2.rc. See below, 
which shows the added text highlighted in blue: 

 
    [[PPBUILD_RESOURCE]] 
        inherit = HPC_SERIAL 
        [[[job]]] 
            execution time limit = PT5M 
 
    [[FLIGHT_TRACK_RESOURCE]]                                 
        inherit = HPC_SERIAL, RETRIES                         
        [[[job]]]                                             
            execution retry delays = PT5M, PT5M, PT10M, PT10M 
            execution time limit = PT1H                       
 
    [[POSTPROC_RESOURCE]] 
        inherit = HPC_SERIAL 
        pre-script = """module load postproc 
                        module list 2>&1 
                        ulimit -s unlimited         
                     """ 

5) Modify roses/$runid/suite.rc by adding the highlighted text as shown below: 
 
{# Command for UM must make sure using main executable #} 
{% set UM_TASK_RUN_COMMAND = TASK_RUN_COMMAND ~ ' --
path="share/fcm_make_um/build-*/bin"' %} 
 
{# Set rose date command and associated print-format options #} 
{% set ROSEDATE = "rose date -c --calendar=" ~ EXPT_CALENDAR %} 
{% set PFMT_YR = "--print-format='%Y'" %} 
{% set PFMT_FLIGHTMONTH = "--print-format='%Y%m'" %} 
{% set PFMT_MONTH = "--print-format='%Y%b'" %} 
{% set PFMT_DUMP = "--print-format='%Y%m%d_%H'" %} 
{% set PFMT_UM_PT = "--print-format='%Y,%m,%d,%H,%M,%S'" %} 
{% set PFMT_UM_DUR = "--print-format='y,m,d,h,M,s'" %} 
 
{# Set jinja2 variables based on values from rose-suite.conf file #} 
{% set CONFIG_OPT = '(' ~ EXPT_CONFIG ~ ') (' ~ EXPT_HORIZ ~ ') (' ~ 
EXPT_CALENDAR ~ ') ' ~ EXPT_AEROSOLS %} 
 

………… 
 {# Set up cycling graph #} 

 {% set RESUB_GRAPH = '' %} 
 {% set RESUB_GRAPH = RESUB_GRAPH ~ 'flight_track_sim => ' %} 
 {% set RESUB_GRAPH = RESUB_GRAPH ~ 'postproc => ' if TASK_POSTPROC else 
RESUB_GRAPH %} 
 {% set RESUB_GRAPH = RESUB_GRAPH ~ 'pptransfer => ' if TASK_PPTRANSFER else 
RESUB_GRAPH %} 
 {% set RESUB_GRAPH = RESUB_GRAPH ~ 'supermean => ' if TASK_SUPERMEAN else 
RESUB_GRAPH %} 
 {% set RESUB_GRAPH = RESUB_GRAPH ~ 'rose_arch_logs => ' if TASK_ARCH_LOG else 
RESUB_GRAPH %} 
 {% set RESUB_GRAPH = RESUB_GRAPH ~ 'housekeeping' %} 
 
 [[[ {{EXPT_RESUB}} ]]] 
  graph = atmos_main => {{ RESUB_GRAPH }} 
………… 



 
 [[atmos_main]] 
     inherit = RUN_MAIN, ATMOS_RESOURCE, ATMOS 
     post-script = save_wallclock.sh {{EXPT_RESUB}} 
 
 [[fcm_make_pp]] 
     inherit = RUN_MAIN, EXTRACT_RESOURCE 
 [[fcm_make2_pp]] 
     inherit = RUN_MAIN, PPBUILD_RESOURCE 
 
 [[flight_track_sim]] 
     inherit = RUN_MAIN, FLIGHT_TRACK_RESOURCE 
     pre-script = ''' 
       export PATH=/home/n02/n02/mrr32/miniconda3/bin:$PATH 
       export 
UDUNITS2_XML_PATH=/home/n02/n02/mrr32/miniconda3/share/udunits/udunits2.xml 
                     ''' 
     [[[environment]]] 
         ROSE_TASK_APP = flight_track_sim 
         YEAR_MONTH = $({{ROSEDATE}} {{PFMT_FLIGHTMONTH}}) 
         CYCLEPERIOD = {{EXPT_RESUB}} 
 
 [[POSTPROC]] 
     [[[environment]]] 
         CYCLEPERIOD = {{EXPT_RESUB}} 

  
  
4. Description of UM_to_flightrack.py 
UM_to_flightrack.py performs the following steps: 

1) Read air pressure and campaign name from flight track files, using CIS python 
libraries. 

2) Read all model variables and Heaviside functions on model pressure levels, from 
hourly UM-format files, using cf-python libraries, and remove grid points for which 
the Heaviside function is zero. 

3) Colocate model variables onto flight track (using CIS python libraries). 
4) Write daily NetCDF file containing model variables colocated onto flight track (using 

CIS python libraries). 
5) Read daily NetCDF files and write monthly NetCDF, CF-compliant files (one file per 

model variable per month). 
6) If archiving of hourly UM-format files is set to False, delete hourly files before the 

postproc step. 
 
4.1 Input 
Command line arguments 
The flight track simulator app, fligh_track_sim, provides input variables from the Rose GUI 
and invokes UM_to_flightrack.py parsing such variables as command line arguments. A list 
of input variables required to run UM_to_flightrack.py, their description and usage is shown 
in Table 1. 
 

ARGUMENT DESCRIPTION 
-i --inputdir Directory_in Directory_in is the full path to the directory containing hourly pp files  
-t --trackdir Directory_ft Directory_ft is the full path to the directory containing flight track files  
-d --cycle_date YearMonth YearMonth is a six digit tag to identify the start time of the analysis  
-n --n_months N N is the number of months to process from/including YearMonth (optional; default 1) 
-r --runid UM_jobid UM_jobid is the unique identifier associated to a UM integration  



-p --ppstream Single_char Single_char  is a single character identifying the hourly data ppstream as defined in 
Rose, e.g. k 

-m --method Interpolation Interpolation is “lin”/“nn” for linear or nearest neighbour interpolation (optional; 
default lin)  

-c --climatology True/False True produces a multi-year climatology for each flight (optional; default False) 
-o --outdir Directory_out Directory_out is the location to write output NetCDF files (optional). If batch is 

selected, output files are always written to Directory_in and additionally copied to 
Directory_out if present. If postprocessing is selected, output files are written to the 
current directory (./) or to Directory_out if present)  

batch Indicates the python script is running within the UM run-time workflow 
-a --archive_hourly  True to archive hourly files instead of deleting them (optional; default True) 

postprocessing Indicates the python script is running outside the UM run-time workflow 
-s --select_stash Code  Code is a list of stashcodes to be processed (optional; default = process all)  

  
 
Table 1. Description of command line arguments used to run UM_to_flightrack.py 
 
A subparser argument, ‘jobtype’, is used to indicate whether the code is running within the 
UM-UKCA run-time workflow (if ‘batch’ is selected) or as a standalone postprocessing tool, 
eg on existing model data, (if ‘postprocessing’ is selected). These subparser arguments also 
unlock specific conditional arguments: --archive_hourly can be used only if ‘batch’ is 
selected and --select_stash can only be used if ‘postprocessing’ is selected. 
 
Input files 
Suitable formats for model input are NetCDF, UM pp format and UM fieldsfile format, while 
input files containing flight track information are required to be in NetCDF, CF-compliant 
format. The ability to read different formats of model input files gives extra flexibility to the 
code as it allows to read other model data as well as UM-UKCA data. 
 
4.1 Code Optimisation 
There are several python libraries that can deal with reading/writing of large, gridded data 
files (e.g. CIS, cf-python, Iris [12] etc.). The choice to use CIS python libraries stems from 
their ability to handle ungridded data (such as data on a flight track) and the ease of 
performing colocation from gridded to ungridded data. However, preliminary tests showed 
that reading model input files using CIS was significantly slower than reading the same file 
with Iris or cf-python. For a typical climate resolution file, containing 24 hourly values for 7 
variables on 19 vertical levels, read times where ~30 minutes for CIS, ~6 minutes for Iris and 
~30 seconds for cf-python. Given that potentially many such files would need to be read in 
each model month, using CIS to read model data would be unfeasible. For this reason, cf-
python was chosen to read the model data. However, CIS and cf-python use very different 
data structures for the gridded variables they read. In order to overcome this problem, a 
python function was developed to convert the cf-python gridded data structure to the CIS 
gridded data structure. This work was then extended to produce similar functions which 
convert cf-python gridded data structure to Iris or xarray data structure. These functions are 
more widely useful as they allow users to efficiently read large datasets using the fast cf-
python libraries and then convert to the desired gridded data structure to interface with 
python code using CIS, Iris or xarray libraries.  These functions can be found in the 
convert_CFvars.py python module available on GitHub ( https://github.com/MariaRusso/CF-
CIS-Iris_python_tools ). 



Since reading model data and dividing by the Heaviside function are the slowest steps in 
UM_to_flightrack.py, we further optimized the code by only reading model days for which a 
flight track input file exists. 
 
4.2 Output 
The model data output on flight track is generated in a NetCDF, CF-compliant format. The 
size of monthly output generated by UM_to_flightrack.py depends on the number and size 
of the flight track files on which the model data is colocated and therefore can vary each 
month.  
Figure 2 shows an example of comparison between modelled ozone and ozone measured by 
the FAAM research aircraft in Jan 2010. This type of comparison can help to identify and 
improve model biases.  
 

  
 
Figure 2. Comparison between observed (left) and modelled (right) ozone for 12 flights in January 2010.  
 
Analysis of ozone as a function of air pressure is shown in Figure 3: the largest bias between 
UKCA and FAAM ozone is found for air pressure values lower than 400 hPa (or altitudes 
greater than 7-8 km); such pressure values are close to the tropopause for mid-latitude 
winter months and therefore the high modelled ozone bias could be due a model 
underestimate in tropopause height, leading to modelled stratospheric ozone being 
sampled.   
 

  
Figure 3. Comparison between modelled and observed ozone for one flight on 18th of January (left) and all 
flights in January 2010 (right).  
 
  



5. Conclusions 
The ability to sample Unified Model output along observed flight tracks allows for better 
model evaluation. However, to do this usually requires the processing of large volumes of 
high frequency gridded model data. By interfacing with the CIS python library, we are able 
to automate this step, greatly reducing post-processing time and the volume of data that 
needs to be saved following a model simulation. This method is also transferable to other 
atmospheric models, and the code is provided on GitHub under an open-source license. The 
use of the cf-python library to read-in the UM-format files significantly decreases the time 
take to read these files when compared to the Iris or CIS libraries.  
 
6. Code availability 
The code is available under a permissive BSD-3 license. See link for details: 
https://github.com/MariaRusso/CF-CIS-Iris_python_tools 
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